当前位置: X-MOL 学术Part. Part. Syst. Charact. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surfaces and Interfaces of Liquid Metal Core–Shell Nanoparticles under the Microscope
Particle & Particle Systems Characterization ( IF 2.7 ) Pub Date : 2020-04-15 , DOI: 10.1002/ppsc.201900469
Sabrina S Hafiz 1 , Daniela Labadini 1 , Ryan Riddell 1 , Erich P Wolff 1 , Marvin Xavierselvan 2 , Paul K Huttunen 1 , Srivalleesha Mallidi 2, 3 , Michelle Foster 1
Affiliation  

Eutectic gallium indium (EGaIn), a Ga-based liquid metal alloy holds great promise for designing next generation core-shell nanoparticles (CSNs). A shearing assisted ligand-stabilization method has shown promise as a synthetic method for these CSNs; however, determining the role of the ligand on stabilization demands an understanding of the surface chemistry of the ligand-nanoparticle interface. EGaIn CSNs have been created functionalized with aliphatic carboxylates of different chain length allowing a fundamental investigation on ligand stabilization of EGaIn CSNs. Raman and diffuse reflectance Fourier transform spectroscopies (DRIFTS) confirm reaction of the ligand with the oxide shell of the EGaIn nanoparticles. Changing the length of the alkyl chain in the aliphatic carboxylates (C2-C18) may influence the size and structural stability of EGaIn CSNs, which is easily monitored using atomic force microscopy (AFM). No matter how large the carboxylate ligand, there is no obvious effect on the size of the EGaIn CSNs, except the particle size got more uniform when coated with longer chain carboxylates. The AFM force distance (F-D) measurements are used to measure the stiffness of the carboxylate coated EGaIn CSN. In corroboration with DRIFTS analysis, the stiffness studies show that the alkyl chains undergo conformational changes upon compression.

中文翻译:

显微镜下液态金属核壳纳米粒子的表面和界面

共晶镓铟 (EGaIn) 是一种基于 Ga 的液态金属合金,在设计下一代核壳纳米粒子 (CSN) 方面具有广阔的前景。剪切辅助配体稳定方法已显示出作为这些 CSN 合成方法的前景;然而,确定配体在稳定性方面的作用需要了解配体-纳米颗粒界面的表面化学。EGaIn CSN 已经被不同链长的脂肪族羧酸酯官能化,从而可以对 EGaIn CSN 的配体稳定性进行基础研究。拉曼和漫反射傅立叶变换光谱 (DRIFTS) 证实了配体与 EGaIn 纳米颗粒的氧化物壳的反应。改变脂肪族羧酸盐 (C2-C18) 中烷基链的长度可能会影响 EGaIn CSN 的尺寸和结构稳定性,这可以使用原子力显微镜 (AFM) 轻松监测。无论羧酸盐配体有多大,对EGaIn CSNs的尺寸没有明显影响,只是当用更长链的羧酸盐包覆时粒径变得更加均匀。AFM 力距离 (FD) 测量值用于测量羧酸盐涂层 EGaIn CSN 的刚度。与 DRIFTS 分析相比,刚度研究表明烷基链在压缩时会发生构象变化。除了当用更长链的羧酸盐包覆时粒径变得更均匀。AFM 力距离 (FD) 测量值用于测量羧酸盐涂层 EGaIn CSN 的刚度。与 DRIFTS 分析相比,刚度研究表明烷基链在压缩时会发生构象变化。除了当用更长链的羧酸盐包覆时粒径变得更均匀。AFM 力距离 (FD) 测量值用于测量羧酸盐涂层 EGaIn CSN 的刚度。与 DRIFTS 分析相比,刚度研究表明烷基链在压缩时会发生构象变化。
更新日期:2020-04-15
down
wechat
bug