当前位置: X-MOL 学术Stoch. Environ. Res. Risk Assess. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Probabilistic multi-objective optimization for landslide reinforcement with stabilizing piles in Zigui Basin of Three Gorges Reservoir region, China
Stochastic Environmental Research and Risk Assessment ( IF 4.2 ) Pub Date : 2020-04-15 , DOI: 10.1007/s00477-020-01800-5
Wenmin Yao , Changdong Li , Hongbin Zhan , Huawei Zhang , Wenqiang Chen

Zigui Basin is a major landslide-prone region in the Three Gorges Reservoir region of China, and the stabilizing pile is an effective and widely employed countermeasure to reinforce landslides in this region. However, stabilizing piles are mostly designed using deterministic and stability-oriented methods, which generally ignore the system performance and cost-effectiveness. Using the Majiagou landslide reinforced with stabilizing piles as a case study, a probabilistic multi-objective optimization framework for the design of stabilizing piles is proposed and illustrated. Specifically, performance objectives related to failure probability, system robustness and life-cycle cost of the landslide-stabilizing pile system with feasible designs are evaluated, then the best compromised design is obtained by means of Pareto optimality. Expert knowledge and professional judgment are required to set necessary restrictions and finally determine the optimal design. The results show that there is a better design of stabilizing piles than the existing one, with which acceptable reinforcement effectiveness, compromised life-cycle cost and robust system performance can be realized. The optimal design will also vary with the concerned performance objectives and knowledge-based judgment. Further relationships and interpretations between design parameters and system responses are discussed through parametric analyses.

更新日期:2020-04-22
down
wechat
bug