当前位置: X-MOL 学术Russ. J. Electrochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Alkalinity of Electro-Activated Aqueous Solutions
Russian Journal of Electrochemistry ( IF 1.2 ) Pub Date : 2020-04-15 , DOI: 10.1134/s1023193520010048
A. Gerzhova , M. Aider

Abstract

Electro-activated alkaline (basic) solution known as catholyte has been reported to have a number of unique properties. The changes in the pH and alkalinity of the catholyte were monitored in the current study. A full-factorial design was applied in order to examine the effects of current, time of treatment, and salt concentration on the electro-activated solutions treated in 4 types of configurations. Two configurations were constructed as three-compartment cells with chambers separated by anion exchange membrane (AEM) and cation exchange membrane (CEM) with different dispositions in the cell. The other two configurations were two-compartment cells with chambers separated by either an AEM or a CEM. For pH increase, time was the most significant factor, whereas for the alkalinity the cell configuration had a significant impact. Thus, when CEM was used to separate central and cathodic compartments in a three-cell reactor, or anodic and cathodic compartments in a two-cell reactor only current and time were found to be highly significant. On the other hand, when the AEM was used the salt concentration appeared to be an important factor too. Maximum values for pH (pH 12) and alkalinity (25.46 ± 0.31 mmol/L) were obtained after 60 min of treatment and 0.2 A current, and regardless of NaCl concentrations when CEM was used, whereas maximum values for the AEM membrane were achieved only with maximum NaCl concentration of 1 M. Despite highly alkaline medium (pH ~ 12) the strength of the solution was comparable to dilute NaOH solution (~0.03 M).



中文翻译:

电活化水溶液的碱度

摘要

据报道,被称为阴极电解液的电活化碱性(碱性)溶液具有许多独特的性能。在本研究中监测了阴极电解液的pH和碱度变化。应用全因子设计以检查电流,处理时间和盐浓度对以4种类型配置处理的电活化溶液的影响。将两种配置构造为三室电池,其腔室由阴离子交换膜(AEM)和阳离子交换膜(CEM)隔开,并在其中配置不同。其他两种配置是两室隔室,隔室由AEM或CEM隔开。对于pH的增加,时间是最重要的因素,而对于碱度,电池的配置则有很大的影响。从而,当使用CEM分隔三室反应器中的中央和阴极隔室,或两室反应器中的阳极和阴极隔室时,仅发现电流和时间非常重要。另一方面,当使用AEM时,盐浓度似乎也是一个重要因素。处理60分钟和0.2 A电流后,无论使用NaCl浓度是多少,pH值(pH 12)和碱度(25.46±0.31 mmol / L)均获得,而AEM膜仅达到最大值NaCl的最大浓度为1M。尽管存在高碱性介质(pH〜12),但溶液的强度与NaOH稀溶液(〜0.03 M)相当。或两室反应器中的阳极和阴极隔室,仅发现电流和时间非常重要。另一方面,当使用AEM时,盐浓度似乎也是一个重要因素。处理60分钟和0.2 A电流后,无论使用NaCl浓度是多少,pH值(pH 12)和碱度(25.46±0.31 mmol / L)均获得,而AEM膜仅达到最大值NaCl的最大浓度为1M。尽管存在高碱性介质(pH〜12),但溶液的强度与NaOH稀溶液(〜0.03 M)相当。或两室反应器中的阳极和阴极隔室,仅发现电流和时间非常重要。另一方面,当使用AEM时,盐浓度似乎也是一个重要因素。处理60分钟和0.2 A电流后,无论使用NaCl浓度是多少,pH值(pH 12)和碱度(25.46±0.31 mmol / L)均获得,而AEM膜仅达到最大值NaCl的最大浓度为1M。尽管存在高碱性介质(pH〜12),但溶液的强度与NaOH稀溶液(〜0.03 M)相当。

更新日期:2020-04-22
down
wechat
bug