当前位置: X-MOL 学术Earth Planets Space › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulated east–west differences in F-region peak electron density at Far East mid-latitude region
Earth, Planets and Space ( IF 3.0 ) Pub Date : 2020-04-15 , DOI: 10.1186/s40623-020-01175-5
Zhipeng Ren , Biqiang Zhao , Weixing Wan , Libo Liu , Xing Li , Tingting Yu

Using TIME3D-IGGCAS model, we simulated the east–west differences in F-region peak electron density (NmF2) in the Far East mid-latitude region near the longitudinal sectors with very clear zonal variations of geomagnetic declination, and mainly analyzed the influence of the geomagnetic field configuration on the east–west differences. We found that, after removing the longitudinal variations of neutral parameters, TIME3D-IGGCAS can better represent the observed relative east–west difference ( R ew ) features. R ew is mainly negative (West NmF2 > East NmF2) at noon and positive (East NmF2 > West NmF2) at evening–night. The magnitude of daytime negative R ew is weaker in winter and stronger in summer, and the daytime R ew shows two negative peaks around two equinoxes. With the increasing solar flux level, the magnitude of R ew mainly becomes larger, and the two daytime negative peaks slightly shift to June Solstice. With the decreasing geographical latitude, R ew mainly becomes positive, and the two daytime negative peaks slightly shift to June Solstice. Our simulation also suggested that the thermospheric zonal wind plays an important role in the formation of the ionospheric east–west differences in the Far East mid-latitude region. The observed solar activity dependency of the ionospheric EW differences may be driven primarily by corresponding zonal wind changes with solar activity, whereas the observed latitudinal dependency of the differences is associated with primarily zonal wind and secondarily meridional wind latitudinal variations.

中文翻译:

远东中纬度地区 F 区峰值电子密度的模拟东西向差异

利用TIME3D-IGGCAS模型,我们模拟了远东中纬度地区F区峰值电子密度(NmF2)的东西差异,在地磁偏角的纬向变化非常明显的纵向扇区附近,并主要分析了F区峰值电子密度(NmF2)的东西差异。东西差异的地磁场配置。我们发现,在去除中性参数的纵向变化后,TIME3D-IGGCAS 可以更好地表示观测到的相对东西向差异 (Rew) 特征。R ew 在中午主要为负值(West NmF2 > East NmF2),在傍晚至夜间为正值(East NmF2 > West NmF2)。白天负R ew 的量级冬季较弱,夏季较强,白天R ew 在两个春分点附近出现两个负峰。随着太阳光通量水平的增加,R ew 的量级主要变大,白天的两个负峰向六月至日略有移动。随着地理纬度的减小,R ew 主要变为正值,白天的两个负峰向六月至日略有移动。我们的模拟还表明,热层纬向风在远东中纬度地区电离层东西差异的形成中起着重要作用。观测到的电离层 EW 差异的太阳活动依赖性可能主要由相应的纬向风随太阳活动变化驱动,而观测到的差异的纬度依赖性主要与纬向风和次要的经向风纬度变化相关。随着地理纬度的减小,R ew 主要变为正值,白天的两个负峰向六月至日略有移动。我们的模拟还表明,热层纬向风在远东中纬度地区电离层东西差异的形成中起着重要作用。观测到的电离层 EW 差异的太阳活动依赖性可能主要由相应的纬向风随太阳活动变化驱动,而观测到的差异的纬度依赖性主要与纬向风和次要的经向风纬度变化相关。随着地理纬度的减小,R ew 主要变为正值,白天的两个负峰向六月至日略有移动。我们的模拟还表明,热层纬向风在远东中纬度地区电离层东西差异的形成中起着重要作用。观测到的电离层 EW 差异的太阳活动依赖性可能主要由相应的纬向风随太阳活动变化驱动,而观测到的差异的纬度依赖性主要与纬向风和次要的经向风纬度变化相关。我们的模拟还表明,热层纬向风在远东中纬度地区电离层东西差异的形成中起着重要作用。观测到的电离层 EW 差异的太阳活动依赖性可能主要由相应的纬向风随太阳活动变化驱动,而观测到的差异的纬度依赖性主要与纬向风和次要的经向风纬度变化相关。我们的模拟还表明,热层纬向风在远东中纬度地区电离层东西差异的形成中起着重要作用。观测到的电离层 EW 差异的太阳活动依赖性可能主要由相应的纬向风随太阳活动变化驱动,而观测到的差异的纬度依赖性主要与纬向风和次要的经向风纬度变化相关。
更新日期:2020-04-15
down
wechat
bug