当前位置: X-MOL 学术Quantum Inf. Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum and classical query complexities for generalized Deutsch–Jozsa problems
Quantum Information Processing ( IF 2.5 ) Pub Date : 2020-03-25 , DOI: 10.1007/s11128-020-02652-2
Zhengwei Xie , Daowen Qiu

The Deutsch–Jozsa algorithm is one of the first examples of a quantum algorithm that is exponentially faster than any possible deterministic classical algorithm. We generalize the Deutsch–Jozsa problem from the perspective of functional correlation, i.e., given two unknown n-bit Boolean functions fg, the testing problem is to determine whether \(|C(f,g)|=0\) or \(|C(f,g)|=\epsilon \), where \(1/2^{(n-1)}\le \epsilon \le 1\), promised that one of these is the case. Firstly, we propose two exact quantum algorithms for making distinction between \(|C(f,g)|=0\) and \(|C(f,g)|=\epsilon \) using the Deutsch–Jozsa algorithm and also the amplitude amplification technique with query complexity of \(O(1/\epsilon )\), where C(fg) denotes the correlation between two Boolean functions fg. Secondly, we present a lower bound \({\varOmega }(1/\epsilon )\) on the above promised problem, which proves that our quantum algorithms are optimal. Thirdly, we can accurately distinguish \(|C(f,g)|=\varepsilon \) from \(|C(f,g)|=1\) using the similar methods mentioned above, where \(0\le \varepsilon \le 1-1/2^{(n-1)}\), promised that one of these is the case. We give a lower bound \({\varOmega }(1/\sqrt{1-\varepsilon })\) and an upper bound \(O(4/\sqrt{1-\varepsilon ^{2}})\) on this promised problem, which implies that the two bounds are almost tight. However, the query complexity of classical deterministic algorithms for two promised problems is \({\varTheta }(2^{n})\).

中文翻译:

广义Deutsch-Jozsa问题的量子和经典查询复杂度

Deutsch-Jozsa算法是量子算法的第一个例子,它比任何可能的确定性经典算法都快得多。我们从函数相关的角度推广Deutsch-Jozsa问题,即给定两个未知的n位布尔函数f,  g,测试问题是确定\(| C(f,g)| = 0 \)还是\(| C(f,g)| = \ epsilon \),其中\(1/2 ^ {(n-1)} \ le \ epsilon \ le 1 \)承诺是其中一种情况。首先,我们提出了两种精确的量子算法来区分\(| C(f,g)| = 0 \)\(| C(f,g)| = \ epsilon \)使用Deutsch-Jozsa算法以及具有查询复杂度\(O(1 / \ epsilon)\)的幅度放大技术,其中Cf,  g)表示两个布尔函数f,  g的相关性。其次,针对上述承诺问题提出了下界\({\ varOmega}(1 / \ epsilon)\),这证明了我们的量子算法是最优的。第三,我们可以使用上述类似方法将\(| C(f,g)| = \ varepsilon \)\(| C(f,g)| = 1 \)准确区分开,其中\(0 \ le \ varepsilon \ le 1-1 / 2 ^ {(n-1)} \),承诺情况之一。我们给下界\({\ varOmega}(1 / \ sqrt {1- \ varepsilon})\)和上界\(O(4 / \ sqrt {1- \ varepsilon ^ {2}})\),这意味着两个界限几乎是紧密的。但是,经典确定性算法针对两个承诺的问题的查询复杂度为\({\ varTheta}(2 ^ {n})\)
更新日期:2020-03-25
down
wechat
bug