当前位置: X-MOL 学术Solid State Ionics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influences of carbon nanotubes in Tin nanocomposite active plate on the diffusion induced stresses and curvature in bilayer lithium-ion battery electrodes
Solid State Ionics ( IF 3.0 ) Pub Date : 2020-04-13 , DOI: 10.1016/j.ssi.2020.115315
Roozbeh Pouyanmehr , Mohammad Kazem Hassanzadeh-Aghdam , Hamed Mohaddes Deylami , Reza Ansari

Structure integrity of electrodes can be broken by the diffusion induced stresses (DISs) leading to a significant degradation of storage capacity and cycling stability of lithium-ion batteries. In this paper, the effects of adding carbon nanotubes (CNTs) into the Tin (Sn)-based nanocomposite active plate bonded to the current collector on the DISs and curvature of bilayer electrodes are numerically investigated. A physics-based hierarchical modeling approach based on the Mori-Tanaka micromechanical method is developed to estimate the effective properties of CNT-Sn nanocomposite active plate. The predictions of the micromechanics method are in good agreement with the experimental data. It is shown that the CNTs embedded into the active plate have the significant contribution to the mechanical performances of lithium-ion battery electrodes. Adding the CNTs into the nanocomposite active plate can alleviate the overall stress and curvature of the bilayer electrodes. The influences of volume fraction, length, diameter, non-straight shape and agglomeration of CNTs as well as the geometric parameters of the bilayer electrode on the built-in stresses and flexural deformation are extensively discussed. The overall stresses and curvature of the bilayer electrodes can be further decreased by aligning the CNTs into the nanocomposite active plate. The present work can provide a novel angle of view for designing and evaluating the bilayer electrodes containing CNT-metal nanocomposite active plates.



中文翻译:

锡纳米复合活性板中碳纳米管对双层锂离子电池电极扩散诱导的应力和曲率的影响

电极的结构完整性可能会因扩散引起的应力(DIS)破坏,从而导致锂离子电池的存储容量和循环稳定性显着下降。本文研究了碳纳米管(CNTs)添加到结合​​到集电器的锡(Sn)基纳米复合活性板上对双层电极的DIS和曲率的影响。提出了一种基于森-田中微机械方法的基于物理的层次建模方法,以估计CNT-Sn纳米复合活性板的有效性能。微观力学方法的预测与实验数据吻合良好。结果表明,嵌入活性板中的CNT对锂离子电池电极的机械性能具有重大贡献。将CNT添加到纳米复合活性板中可以减轻双层电极的总应力和曲率。广泛讨论了碳纳米管的体积分数,长度,直径,非直线形和团聚以及双层电极的几何参数对内应力和弯曲变形的影响。通过将CNT对准纳米复合活性板,可以进一步减小双层电极的总应力和曲率。本发明可以为设计和评估包含CNT-金属纳米复合活性板的双层电极提供新颖的视角。大量讨论了碳纳米管的非直形和团聚以及双层电极在内应力和弯曲变形方面的几何参数。通过将CNT对准纳米复合活性板,可以进一步减小双层电极的总应力和曲率。本发明可以为设计和评估包含CNT-金属纳米复合活性板的双层电极提供新颖的视角。讨论了碳纳米管的非直形和团聚以及双层电极在内应力和弯曲变形方面的几何参数。通过将CNT对准纳米复合活性板,可以进一步减小双层电极的总应力和曲率。本发明可以为设计和评估包含CNT-金属纳米复合活性板的双层电极提供新颖的视角。

更新日期:2020-04-13
down
wechat
bug