当前位置: X-MOL 学术Extreme Mech. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Compression and buckling of microarchitectured Neovius-lattice
Extreme Mechanics Letters ( IF 4.7 ) Pub Date : 2020-04-08 , DOI: 10.1016/j.eml.2020.100688
Diab W. Abueidda , Mohamed Elhebeary , Cheng-Shen (Andrew) Shiang , Rashid K. Abu Al-Rub , Iwona M. Jasiuk

New materials with enhanced properties are of high scientific and industrial interests. Microarchitectured cellular materials possess robust mechanical properties such as high strength-to-weight ratios due to their architectures and size effect appearing in metals and ceramics. In this study, we investigate the mechanical properties of a novel microlattice based on the Neovius surface, a member of the triply periodic minimal surfaces. We show that the Neovius-microlattice exhibits high uniaxial modulus, energy absorption, and strength due to its architecture, which is free of self-intersecting elements. The polymeric Neovius-microlattice deforms locally by two mechanisms: buckling and plastic yielding, while the brittle fracture is not observed. Also, we show that the mechanical properties of the Neovius-microlattice can be enhanced further by coating it with a ceramic (alumina) layer. Additionally, the nature of instability in these architectured materials (at the micro-scale, microns in dimensions) is explored through experiments and computational modeling. The two primary instability mechanisms, out-of-plane and in-plane buckling, in cellular materials, are distinguished. Such a study can pave the path for designing cellular materials that are stiff, strong, light, and buckling-resistant.



中文翻译:

微结构新维架的压缩和屈曲

具有增强性能的新材料具有很高的科学和工业兴趣。由于微结构蜂窝材料的结构和在金属和陶瓷中出现的尺寸效应,它们具有强大的机械性能,例如高强度重量比。在这项研究中,我们研究了基于Neovius表面的新型微晶格的机械性能,该表面是三重周期性最小表面的成员。我们显示,Neovius-微晶格由于其结构而显示出高的单轴模量,能量吸收和强度,并且没有自相交元素。聚合物新星微晶格通过两种机理局部变形:屈曲和塑性屈服,而未观察到脆性断裂。也,我们表明,通过用陶瓷(氧化铝)层涂覆新微晶格可以进一步提高其机械性能。此外,通过实验和计算模型探索了这些结构化材料(在微米级,微米级)的不稳定性。区分了蜂窝材料中的两种主要的不稳定性机制,即面外屈曲和面内屈曲。这样的研究可以为设计坚硬,坚固,轻便且抗屈曲的蜂窝材料铺平道路。在蜂窝材料中是卓著的。这样的研究可以为设计坚硬,坚固,轻便且抗屈曲的蜂窝材料铺平道路。在蜂窝材料中是卓著的。这样的研究可以为设计坚硬,坚固,轻便且抗屈曲的蜂窝材料铺平道路。

更新日期:2020-04-08
down
wechat
bug