当前位置: X-MOL 学术Limnol. Oceanogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of ocean climate on spatiotemporal variation in sea urchin settlement and recruitment
Limnology and Oceanography ( IF 4.5 ) Pub Date : 2020-04-08 , DOI: 10.1002/lno.11440
Daniel K. Okamoto 1, 2 , Stephen C. Schroeter 3 , Daniel C. Reed 3
Affiliation  

Sea urchins are voracious herbivores that influence the ecological structure and function of nearshore ecosystems throughout the world. Like many species that produce planktonic larvae, their recruitment is thought to be particularly sensitive to climatic fluctuations that directly or indirectly affect adult reproduction and larval transport and survival. Yet how climate alters sea urchin populations in space and time by modifying larval recruitment and year-class strength on the time-scales that regulate populations remains understudied. Using a, spatially replicated weekly-biweekly data set spanning 27 yr and 1100 km of coastline, we characterized seasonal, interannual, and spatial patterns of larval settlement of the purple sea urchin (Strongylocentrotus purpuratus). We show that large spatial differences in temporal patterns of larval settlement were associated with different responses to fluctuations in ocean temperature and climate. Importantly, we found a strong correlation between larval settlement and regional year class strength suggesting that such temporal and spatial variation in settlement plays an important role in controlling population dynamics. These results provide strong evidence over extensive temporal and spatial domains that climatic fluctuations shape broad-scale patterns of larval settlement and subsequent population structure of an important marine herbivore known to control the productivity, community state, and provisioning services of marine ecosystems. Large-scale climate oscillations (e.g., El Niño Southern Oscillation, North Atlantic Oscillation) lead to changes in ocean temperature, biogeochemistry, and the severity and frequency of disruptive events that affect ocean circulation, upwelling, and primary productivity (Mantua et al. 1997; Cai 2014). Such shifts impose wide-reaching ecological impacts, in part by altering animal recruitment and food web structure in space and time (Sydeman et al. 2015). Hence, understanding how climate variability alters the recruitment of marine species is particularly important for effective conservation and management of the ocean’s resources. Climatic fluctuations give rise to shifts in numerous factors that shape both adult reproduction and larval supply, including primary productivity, temperature, and advection and transport. Given these multiple direct and indirect effects of climate on recruitment, significant challenges remain in achieving such understanding for benthic species with planktonic larvae due to the substantial effort needed to characterize spatial and temporal variation in larval settlement and the numerous sensitive vital rates that contribute to it. For benthic species like sea urchins, understanding causes and consequences of recruitment variability has both ecological and economic implications. Sea urchin grazing can alter the structure of some of the world’s most diverse and productive marine ecosystems, including coral reefs (Edmunds and Carpenter 2001), seagrass meadows (reviewed by Valentine and Heck 1999), and kelp forests (reviewed by Filbee-Dexter and Scheibling 2014). In addition, sea urchins form the basis of important nearshore fisheries in many regions of the world (e.g., Kato and Schroeter 1985; Andrew et al. 2003). As a result, climate-driven changes in sea urchin populations have the potential to profoundly affect the ecological structure and functioning of marine ecosystems and the economic value of the fisheries that they support. Much of the research on controls of sea urchin population dynamics has focused on the roles of predation and disease in controlling adult abundance and their cascading influence on community structure (e.g., Estes and Duggins 1995; Lafferty 2004; Filbee-Dexter and Scheibling 2014; Burt et al. 2018). Yet short-term empirical *Correspondence: dokamoto@bio.fsu.edu Additional Supporting Information may be found in the online version of this article. Author Contribution Statement: D.K.O., S.C.S., and D.C.R. designed research. D.K.O. designed, built, and conducted analyses and wrote the initial manuscript. D.K.O., D.C.R., and S.C.S. managed data. S.C.S. initiated and oversaw data collection and collaborated on all analyses. All authors contributed to revisions.

中文翻译:

海洋气候对海胆聚落和补充时空变化的影响

海胆是贪婪的食草动物,影响着全世界近岸生态系统的生态结构和功能。像许多产生浮游幼虫的物种一样,它们的招募被认为对直接或间接影响成虫繁殖和幼虫运输和生存的气候波动特别敏感。然而,气候如何通过在调节种群的时间尺度上改变幼虫招募和年级强度来改变海胆种群的空间和时间仍然没有得到充分研究。使用跨越 27 年和 1100 公里海岸线的空间复制的每周双周数据集,我们描述了紫色海胆(Strongylocentrotus purpuratus)幼虫定居的季节性、年际和空间模式。我们表明,幼虫沉降时间模式的巨大空间差异与对海洋温度和气候波动的不同反应有关。重要的是,我们发现幼虫定居点与区域年份等级强度之间存在很强的相关性,这表明定居点的这种时空变化在控制种群动态方面起着重要作用。这些结果为广泛的时空域提供了强有力的证据,表明气候波动塑造了一种重要的海洋食草动物的幼虫定居和随后的种群结构的大尺度模式,已知这些食草动物控制着海洋生态系统的生产力、群落状态和供应服务。大尺度气候振荡(例如,厄尔尼诺南方涛动,北大西洋涛动)导致海洋温度、生物地球化学以及影响海洋环流、上升流和初级生产力的破坏性事件的严重程度和频率发生变化(Mantua 等人,1997 年;Cai 2014 年)。这种转变产生了广泛的生态影响,部分原因是在空间和时间上改变了动物招募和食物网结构(Sydeman 等人,2015 年)。因此,了解气候变异如何改变海洋物种的补充对于有效保护和管理海洋资源尤为重要。气候波动导致许多影响成虫繁殖和幼虫供应的因素发生变化,包括初级生产力、温度、平流和运输。鉴于气候对招聘的这些多重直接和间接影响,由于需要付出大量努力来表征幼虫聚落的空间和时间变化以及导致这种变化的众多敏感生命率,因此在实现对具有浮游幼虫的底栖物种的这种理解方面仍然存在重大挑战。对于海胆等底栖物种,了解补充变异的原因和后果具有生态和经济意义。海胆放牧可以改变世界上一些最多样化和生产力最高的海洋生态系统的结构,包括珊瑚礁(Edmunds 和 Carpenter 2001)、海草草甸(Valentine 和 Heck 1999 年回顾)和海藻森林(Filbee-Dexter 和谢布林 2014 年)。此外,海胆构成了世界许多地区重要近岸渔业的基础(例如,Kato 和 Schroeter 1985;Andrew 等人,2006 年)。2003)。因此,海胆种群的气候驱动变化有可能深刻影响海洋生态系统的生态结构和功能以及它们所支持的渔业的经济价值。许多关于海胆种群动态控制的研究都集中在捕食和疾病在控制成体丰度方面的作用及其对群落结构的连锁影响(例如,Estes 和 Duggins 1995;Lafferty 2004;Filbee-Dexter 和 Scheibling 2014;Burt等人,2018 年)。然而,短期经验 *通讯:dokamoto@bio.fsu.edu 附加支持信息可在本文的在线版本中找到。作者贡献声明:DKO、SCS 和 DCR 设计的研究。DKO 设计、构建和进行分析并撰写了最初的手稿。DKO、DCR、和 SCS 管理的数据。SCS 发起并监督数据收集,并在所有分析中进行协作。所有作者都参与了修订。
更新日期:2020-04-08
down
wechat
bug