当前位置: X-MOL 学术Fire Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal Analysis and Cone Calorimeter Study of Engineered Wood with an Emphasis on Fire Modelling
Fire Technology ( IF 2.3 ) Pub Date : 2019-11-02 , DOI: 10.1007/s10694-019-00922-9
Jiří Ira , Lucie Hasalová , Vojtěch Šálek , Milan Jahoda , Václav Vystrčil

Engineered wood products (EWPs) are a group of materials having a very similar chemical composition but having different and non-uniform thermo-physical properties throughout their thickness. Such materials present a significant challenge from the pyrolysis modelling point of view. The main focus of the paper is to study and compare the differences between six EWPs—oriented strand board (OSB), plywood, particle board (PB), low-density (LDF), medium-density (MDF) and high-density (HDF) fibreboard—in terms of their pyrolysis and burning behaviour. Vertical density profiles (VDPs), thermal degradation behaviour, and burning behaviour were studied and compared. There is a considerable need for a consistent and systematic approach in estimating pyrolysis model complexity and model input parameters. A systematic method to determine the minimum level of the EWPs decomposition model complexity to reproduce the thermal degradation behaviour as measured using thermogravimetric analysis and using the set of parallel reactions was applied. EWPs were found to have similar thermal decomposition onset and range. Maximal decomposition rates were within 25%. OSB, PB, LDF and HDF decomposition can be modelled using three-step parallel reactions scheme, MDF using four parallel reactions. A set of parallel reactions cannot describe the thermal degradation behaviour of plywood. Cone calorimeter tests at heat flux levels of 20 kW/m 2 , 50 kW/m 2 and $$80\, \hbox {kW}/\hbox {m}^{2}$$ 80 kW / m 2 revealed that influence of the different thermo-physical properties on time to ignition and time to peak heat release rate (HRR) is not significant except LDF and HDF due to their very different density. Peak HRR varies between EWPs, which is attributed primarily to charring and different thermo-physical properties of the EWPs char. EWPs gas phase combustion parameters for the fire models were derived.

中文翻译:

强调火灾建模的工程木材的热分析和锥形量热仪研究

工程木制品 (EWP) 是一组化学成分非常相似但在整个厚度范围内具有不同且不均匀的热物理特性的材料。从热解建模的角度来看,此类材料提出了重大挑战。论文的主要重点是研究和比较六种 EWPs——定向刨花板 (OSB)、胶合板、刨花板 (PB)、低密度 (LDF)、中密度 (MDF) 和高密度 ( HDF) 纤维板——就其热解和燃烧行为而言。研究和比较了垂直密度分布 (VDP)、热降解行为和燃烧行为。在估计热解模型复杂性和模型输入参数时,非常需要一致且系统的方法。应用了一种系统方法来确定 EWP 分解模型复杂性的最低水平,以重现使用热重分析和一组平行反应测量的热降解行为。发现 EWP 具有相似的热分解开始和范围。最大分解率在25%以内。OSB、PB、LDF 和 HDF 分解可以使用三步平行反应方案进行建模,MDF 使用四个平行反应进行建模。一组平行反应无法描述胶合板的热降解行为。锥形量热仪在 20 kW/m 2 、50 kW/m 2 和 $80\ 的热通量水平下进行测试,\hbox {kW}/\hbox {m}^{2}$$ 80 kW / m 2 表明,不同的热物理性质对点火时间和达到峰值放热率(HRR)的影响并不显着,除了LDF 和 HDF 由于它们的密度非常不同。EWP 之间的峰值 HRR 不同,这主要归因于 EWP 炭的炭化和不同的热物理特性。推导出用于火灾模型的 EWPs 气相燃烧参数。
更新日期:2019-11-02
down
wechat
bug