当前位置: X-MOL 学术Geochim. Cosmochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bio-weathering of a uranium-bearing rhyolitic rock from Xiangshan uranium deposit, Southeast China
Geochimica et Cosmochimica Acta ( IF 4.5 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.gca.2020.03.044
Qingyin Xia , Limin Zhang , Hailiang Dong , Ziying Li , Yuyan Zhang , Jinglong Hu , Hongyu Chen , Yu Chen

Abstract Uranium mining and processing has left a serious problem in terms of waste disposal. Microbially mediated U release from crystalline rocks has made the problem even more challenging, but the specific mechanisms for such U release have remained elusive. In this work, bio-weathering experiments of a U-bearing rhyolitic rock were conducted to investigate the rates and mechanisms of microbially-induced U mobilization. Four bacterial isolates from Xiangshan uranium deposit, one of the largest volcanic rock-hosted U deposits worldwide, were able to grow in an oligotrophic medium (OM) in the presence of a U-bearing rhyolitic rock. These bacteria liberated U from the rock through a combination of acidolysis, metabolite-promoted complexation, and oxidative dissolution, among which U mobilization via complexation with citrate was one of the most significant mechanisms. Metabolite secretion was strain-specific, which accounted for the differences in U mobilization efficiency among different bacterial isolates. In particular, Microbacterium sp. 6-1 selectively colonized the surface of U-bearing minerals and mobilized a substantially higher amount of U than other isolates, suggesting a potentially active, mineral-specific attachment and bio-weathering mechanism. Our results demonstrated a high potential and capacity of native microorganisms to mobilize U from U-bearing rock, posing a great challenge for long-term U waste disposal, but also providing an opportunity for U recovery from mine tailings.

中文翻译:

东南象山铀矿床含铀流纹岩的生物风化作用

摘要 铀的开采和加工在废物处理方面留下了严重的问题。结晶岩中微生物介导的 U 释放使这个问题更具挑战性,但这种 U 释放的具体机制仍然难以捉摸。在这项工作中,进行了含 U 流纹岩的生物风化实验,以研究微生物诱导 U 动员的速率和机制。来自象山铀矿床的四种细菌分离物能够在含 U 流纹岩的贫营养介质 (OM) 中生长,香山铀矿床是世界上最大的含有火山岩的 U 矿床之一。这些细菌通过酸解、代谢物促进的络合和氧化溶解的组合从岩石中释放出 U,其中通过与柠檬酸盐络合引起的 U 动员是最重要的机制之一。代谢物分泌是菌株特异性的,这解释了不同细菌分离株之间 U 动员效率的差异。特别是,微杆菌属。6-1 选择性地定植于含 U 矿物的表面,并动员了比其他分离物高得多的 U 量,这表明具有潜在的活性、矿物特异性附着和生物风化机制。我们的研究结果表明,原生微生物具有从含 U 岩中动员 U 的巨大潜力和能力,这对长期处理 U 废物构成了巨大挑战,但也为从尾矿中回收 U 提供了机会。这解释了不同细菌分离株之间 U 动员效率的差异。特别是,微杆菌属。6-1 选择性地定植于含 U 矿物的表面,并动员了比其他分离物高得多的 U 量,这表明具有潜在的活性、矿物特异性附着和生物风化机制。我们的研究结果表明,原生微生物具有从含 U 岩中动员 U 的巨大潜力和能力,这对长期处理 U 废物构成了巨大挑战,但也为从尾矿中回收 U 提供了机会。这解释了不同细菌分离株之间 U 动员效率的差异。特别是,微杆菌属。6-1 选择性地定植于含 U 矿物的表面,并动员了比其他分离物高得多的 U 量,这表明具有潜在的活性、矿物特异性附着和生物风化机制。我们的研究结果表明,原生微生物具有从含 U 岩中动员 U 的巨大潜力和能力,这对长期处理 U 废物构成了巨大挑战,但也为从尾矿中回收 U 提供了机会。矿物特异性附着和生物风化机制。我们的研究结果表明,原生微生物具有从含 U 岩中动员 U 的巨大潜力和能力,这对长期处理 U 废物构成了巨大挑战,但也为从尾矿中回收 U 提供了机会。矿物特异性附着和生物风化机制。我们的研究结果表明,原生微生物具有从含 U 岩中动员 U 的巨大潜力和能力,这对长期处理 U 废物构成了巨大挑战,但也为从尾矿中回收 U 提供了机会。
更新日期:2020-06-01
down
wechat
bug