当前位置: X-MOL 学术Remote Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hyperspectral Estimation of Soil Organic Matter Content using Different Spectral Preprocessing Techniques and PLSR Method
Remote Sensing ( IF 4.2 ) Pub Date : 2020-04-08 , DOI: 10.3390/rs12071206
Lanzhi Shen , Maofang Gao , Jingwen Yan , Zhao-Liang Li , Pei Leng , Qiang Yang , Si-Bo Duan

Soil organic matter (SOM) is the main source of soil nutrients, which are essential for the growth and development of agricultural crops. Hyperspectral remote sensing is one of the most efficient ways of estimating the SOM content. Visible, near infrared, and mid-infrared reflectance spectroscopy, combined with the partial least squares regression (PLSR) method is considered to be an effective way of determining soil properties. In this study, we used 54 different spectral pretreatments to preprocess soil spectral data. These spectral pretreatments were composed of three denoising methods, six data transformations, and three dimensionality reduction methods. The three denoising methods included no denoising (ND), SavitzkyGolay denoising (SGD), and wavelet packet denoising (WPD). The six data transformations included original spectral data, R; reciprocal, 1/R; logarithmic, log(R); reciprocal logarithmic, log(1/R); first derivative, R'; and first derivative of reciprocal, (1/R)'. The three dimensionality reduction methods included no dimensionality reduction (NDR), sensitive waveband dimensionality reduction (SWDR), and principal component analysis (PCA) dimensionality reduction (PCADR). The processed spectra were then employed to construct PLSR models for predicting the SOM content. The main results were as follows—(1) the wavelet packet denoising (WPD)-R' and WPD-(1/R)' data showed stronger correlations with the SOM content. Furthermore, these methods could effectively limit the correlation between the adjacent bands and, thus, prevent “overfitting”. (2) Of the 54 pretreatments investigated, WPD-(1/R)'-PCADR yielded the model with the highest accuracy and stability. (3) For the same denoising method and spectral transformation data, the accuracy of the SOM content estimation model based on SWDR was higher than that of the model based on NDR. Furthermore, the accuracy in the case of PCADR was higher than that for SWDR. (4) Dimensionality reduction was effective in preventing data overfitting. (5) The quality of the spectral data could be improved and the accuracy of the SOM content estimation model could be enhanced effectively, by using some appropriate preprocessing methods (one combining WPD and PCADR in this study).

中文翻译:

不同光谱预处理技术和PLSR方法对土壤有机质含量的高光谱估算

土壤有机质(SOM)是土壤养分的主要来源,对农业作物的生长和发展至关重要。高光谱遥感是估算SOM内容的最有效方法之一。可见,近红外和中红外反射光谱与偏最小二乘回归(PLSR)方法相结合被认为是确定土壤性质的有效方法。在这项研究中,我们使用了54种不同的光谱预处理来预处理土壤光谱数据。这些频谱预处理由三种降噪方法,六种数据转换和三种降维方法组成。三种降噪方法包括无降噪(ND),Savitzky Golay去噪(SGD)和小波包去噪(WPD)。六个数据转换包括原始光谱数据R;倒数1 / R; 对数log(R); 倒数对数,log(1 / R); 一阶导数,R';和倒数的一阶导数(1 / R)'。三种降维方法包括无降维(NDR),敏感波段降维(SWDR)和主成分分析(PCA)降维(PCADR)。然后将处理后的光谱用于构建PLSR模型以预测SOM含量。主要结果如下:(1)小波包去噪(WPD)-R'和WPD-(1 / R)'数据与SOM含量具有更强的相关性。此外,这些方法可以有效地限制相邻频带之间的相关性,因此,防止“过度拟合”。(2)在研究的54种预处理中,WPD-(1 / R)'-PCADR产生的模型具有最高的准确性和稳定性。(3)对于相同的去噪方法和频谱变换数据,基于SWDR的SOM内容估计模型的准确性高于基于NDR的模型。此外,PCADR的精度高于SWDR的精度。(4)降维可有效防止数据过拟合。(5)通过使用一些适当的预处理方法(本研究中结合WPD和PCADR的一种方法),可以提高光谱数据的质量,并有效地提高SOM含量估算模型的准确性。(3)对于相同的去噪方法和频谱变换数据,基于SWDR的SOM内容估计模型的准确性高于基于NDR的模型。此外,PCADR的精度高于SWDR的精度。(4)降维可有效防止数据过拟合。(5)通过使用一些合适的预处理方法(本研究中将WPD和PCADR结合使用),可以提高光谱数据的质量,并有效地提高SOM含量估算模型的准确性。(3)对于相同的去噪方法和频谱变换数据,基于SWDR的SOM内容估计模型的准确性高于基于NDR的模型。此外,PCADR的精度高于SWDR的精度。(4)降维可有效防止数据过拟合。(5)通过使用一些适当的预处理方法(本研究中结合WPD和PCADR的一种方法),可以提高光谱数据的质量,并有效地提高SOM含量估算模型的准确性。(4)降维可有效防止数据过拟合。(5)通过使用一些适当的预处理方法(本研究中结合WPD和PCADR的一种方法),可以提高光谱数据的质量,并有效地提高SOM含量估算模型的准确性。(4)降维可有效防止数据过拟合。(5)通过使用一些合适的预处理方法(本研究中将WPD和PCADR结合使用),可以提高光谱数据的质量,并有效地提高SOM含量估算模型的准确性。
更新日期:2020-04-08
down
wechat
bug