当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Predicting hypoglycemic drugs of type 2 diabetes based on weighted rank support vector machine
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2020-04-08 , DOI: 10.1016/j.knosys.2020.105868
Xinye Wang; Yi Yang; Yitian Xu; Qian Chen; Hongmei Wang; Huafang Gao

Diabetes has become a disease that seriously endangers people’s health, then how to control the content of glycemic is an important issue. Since the treatment scheme of patient is usually a combination of multiple hypoglycemic drugs, multi-label learning is an effective method to solve this problem. By analyzing the type 2 diabetes data set including 2443 diabetics provided by the Chinese People’s Liberation Army General Hospital, we find that the defined daily dose system (DDDs) of drugs is an imbalanced problem, traditional multi-label methods easily leads to poor prediction results. In order to overcome the shortcoming, a weighted rank support vector machine (WRank-SVM) is proposed in this paper. We firstly define the weight of each label and then give each sample different weight according to relevant-irrelevant label pair. This method ensures that the prediction results on drugs with higher DDDs are as accurate as possible. Compared with the other six popular multi-label methods, our WRank-SVM can effectively predict the schemes for hypoglycemic drugs of type 2 diabetes. Meanwhile, receiver operating characteristic (ROC) curve is employed to statistically show the effectiveness of the model. Finally, the correlation between labels and features is further analyzed, and 13 important features are selected to improve the average precision of our proposed algorithm.
更新日期:2020-04-08

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug