当前位置: X-MOL 学术Mater. Today Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel hierarchical nanoporous graphene nanoplatelets with excellent rate capabilities produced via self-templating liquid metal dealloying
Materials Today Communications ( IF 3.7 ) Pub Date : 2020-04-08 , DOI: 10.1016/j.mtcomm.2020.101120
Won-Young Park , Takeshi Wada , Soo-Hyun Joo , Jiuhui Han , Hidemi Kato

A wide variety of multiscale porous carbon materials with improved electrochemical properties have been developed through molecular design, pore control, and compositional tailoring. However, conventional templating and activation approaches involve several time-consuming processes on a limited scale, and the presence of micropores, which act as trap sites, hinders the electrolyte penetration and deteriorates cycle performance in lithium-ion insertion. In this work, hierarchical nanoporous graphene nanoplatelets (HNGNPs) with three-dimensional interconnected meso- and macroporous structure are synthesized by liquid metal dealloying (LMD). These unique porous structures are produced via self-templating dealloying during consecutive two-step dealloying reactions in Bi and Ag melts. The optimized microstructural characteristics of the HNGNPs include high crystallinity (interlayer distance of the (002) plane of ∼0.341 nm and intensity ratio of the Raman G- and D-bands of ∼0.552) and a moderate specific surface area (∼152.7 m2 g−1). The high crystallinity of the HNGNPs at a low temperature of 1200 °C results from a catalytic effect of the liquid melt and the accelerated surface diffusion during LMD. The large surface area, high crystallinity, and structural robustness of the mutually interconnected hierarchies of the HNGNPs lead to their excellent rate capabilities and cycling stability in lithium-ion batteries.



中文翻译:

通过自模板液态金属脱合金生产的新型分级纳米多孔石墨烯纳米片具有出色的速率能力

通过分子设计,孔控制和组成调整,已开发出具有改善的电化学性能的多种多尺度多孔碳材料。然而,常规的模板化和活化方法在有限的规模上涉及数个耗时的过程,并且微孔的存在充当捕获位点,阻碍了电解质的渗透并恶化了锂离子插入中的循环性能。在这项工作中,通过液态金属脱合金(LMD)合成了具有三维互连的中孔和大孔结构的分层纳米多孔石墨烯纳米片(HNGNP)。这些独特的多孔结构是在Bi和Ag熔体中连续两步脱合金过程中通过自模板脱合金产生的。2  g -1)。HNGNP在1200°C的低温下具有较高的结晶度,这是由于液态熔体的催化作用和LMD期间表面加速扩散所致。HNGNP相互连接的层次结构的大表面积,高结晶度和结构稳健性,使其在锂离子电池中具有出色的倍率性能和循环稳定性。

更新日期:2020-04-08
down
wechat
bug