当前位置: X-MOL 学术Basin Res. › 论文详情
Changing of the guards: Detrital zircon provenance tracking sedimentological reorganization of a post‐Gondwanan rift margin
Basin Research ( IF 3.304 ) Pub Date : 2019-09-06 , DOI: 10.1111/bre.12403
Milo Barham; Christopher L. Kirkland

Understanding the development of sedimentary systems during continental rifting is important for tracking environmental change and lithospheric processes. Conceptual models have been developed for the sourcing, routing and facies architecture of sediments in rift‐settings, driven in part by quantitative sediment tracking. Here, we present laser ablation split‐stream detrital zircon U/Pb geochronology and Hf‐isotopes for post‐rift (Cretaceous‐Paleogene) clastic sediments from Ocean Drilling Program (ODP) wells and Plio‐Pleistocene palaeoshoreline material, from the southern margin of Australia. Provenance results are contextualized through comparison with well‐characterized source regions and regional pre‐ and syn‐rift sediment reservoirs to track changes associated with Australia‐Antarctica separation during East Gondwana break‐up. The provenance character of the post‐rift sediments studied are distinct from pre‐existing sediment reservoirs and demonstrate termination of previously stable sediment routing systems and a dominance of local basement of the Proterozoic Madura and Coompana provinces (~1.2 Ga and CHUR‐like Hf‐signatures; Moodini Supersuite) in offshore ODP wells. A composite post‐rift Cretaceous?‐Eocene sample in the easternmost well expresses characteristic Phanerozoic zircon age signatures associated with source regions in eastern Australia that are interpreted to reflect inversion in the Ceduna Sub‐basin to the east. Detrital zircon signatures in Plio‐Pleistocene palaeoshoreline sediment are also relatively distinct, indicating derivation from coastal erosion in the Leeuwin Complex (~0.5 and 0.7 Ga subchondritic grains) and Albany–Fraser Orogen (~1.2 Ga subchondritic grains) several hundred, to over a thousand kilometers to the west. Collectively, results highlight the fundamental geological processes associated with rifting that dramatically change the character of sediment provenance via (a) isolation of pre‐existing primary and secondary sources of detritus, (b) development of new source regions in basin compartmentalized highs and localized fault scarps, and (c) establishment of marine and coastal currents that redefine clastic sediment transport.
更新日期:2020-04-21

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug