当前位置: X-MOL 学术Limnol. Oceanogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High stream intermittency in an alpine fluvial network: Val Roseg, Switzerland
Limnology and Oceanography ( IF 3.8 ) Pub Date : 2019-09-30 , DOI: 10.1002/lno.11324
Amael Paillex 1 , Andre R. Siebers 1 , Christian Ebi 2 , Jorrit Mesman 3 , Christopher T. Robinson 1, 4
Affiliation  

More than one-third of the world’s rivers cease to flow and go dry on a periodic basis—so-called intermittent rivers. The frequency and duration of flow intermittency in running waters are increasing due to climate change and water demands for human use. Intermittency effects on stream biodiversity and ecosystem functioning are dramatic and are expected to become increasingly prevalent in alpine landscapes in the near future. This project used modified field sensors to measure flow intermittency, temperature, and water origin (groundwater, precipitation, glacier) at high spatio-temporal resolution throughout an alpine fluvial network (Val Roseg, Switzerland). We continuously recorded water presence in 30 tributary streams and validated sensor performance with fieldcollected measures. Three different flow regimes were observed in the network, including periodically intermittent, seasonally intermittent, and permanently flowing streams. Twenty-four streams (80% of recorded streams) dried at least once during the sampling period. Principal components analysis along with generalized additive models showed alpine streams with low average temperature and high conductivity (groundwater-fed) were prone to permanent flow, whereas streams with higher average temperature and low conductivity (glacier-fed) typically had intermittent flow. The field sensors proved precise for simultaneously measuring flow intermittency, temperature, and water origin at high resolution throughout the river network. Overall, this approach provides an effective way to develop eco-hydrological models that examine the effects of flow intermittency on biodiversity and ecosystem functioning in riverine networks. Natural intermittent rivers and ephemeral streams (IRES) periodically experience cessation of surface flow (Datry et al. 2017). Intermittent and ephemeral waters make up at least 30% of the world’s fluvial systems (Datry et al. 2014), and it is likely that an even higher proportion of low-order streams and headwaters have intermittent surface flow at the global scale (Meyer et al. 2007; Snelder et al. 2013). In this context, flow regimes today are shifting from perennial to intermittent around the globe in response to changes in land use and climate (Leigh et al. 2016). Despite a substantial increase in the number of studies of IRES since the 1990s, major research gaps still exist in understanding how variation in flow cessation affects running waters (Leigh et al. 2016; Stubbington et al. 2018). Part of the complexity in advancing the science of IRES is due to the difficulty of capturing high spatial and temporal resolution data at fine scales of surface flow cessation (Costigan et al. 2017; Stubbington et al. 2018). Indeed, IRES are known to exhibit wide variation in the frequency, timing, and duration of surface flow and drying (Costigan et al. 2017). In low-order streams and headwaters, in particular, surface flow can cease and resume at very fine temporal and spatial scales (Gomi et al. 2002). Characterizing this critical aspect of flow variation within IRES, and its drivers, is thus a vital first step toward understanding how riverine biodiversity and ecosystem processes respond to surface flow cessation, particularly in areas prone to environmental change. Some of the least studied IRES occur in alpine catchments (Robinson et al. 2016). Alpine streams exhibit wide variation in flow regimes driven by high landscape heterogeneity and seasonal variation in contributions from glacial melt, snow melt, groundwater, and precipitation (Malard et al. 1999; Brown et al. 2003; Robinson et al. 2016). Furthermore, extensive landscape gradients, shallow aquifers, and limited transient water storage create the potential for flashy flows and a relatively high proportion of naturally occurring intermittent headwaters (Malard et al. 2000; Robinson and Matthaei 2007; Robinson et al. 2016). Although flow intermittency occurs *Correspondence: amael.paillex@hispeed.ch Additional Supporting Information may be found in the online version of this article.

中文翻译:

高山河流网络中的高流量间歇性:瑞士瓦尔罗塞格

世界上超过三分之一的河流定期停止流动并干涸——即所谓的间歇性河流。由于气候变化和人类用水需求,流水断流的频率和持续时间正在增加。对河流生物多样性和生态系统功能的间歇性影响是巨大的,预计在不久的将来会在高山景观中变得越来越普遍。该项目使用改进的现场传感器以高时空分辨率测量整个高山河流网络(Val Roseg,瑞士)的流量间歇性、温度和水源(地下水、降水、冰川)。我们连续记录了 30 条支流中的水存在情况,并通过现场收集的措施验证了传感器性能。在网络中观察到三种不同的流态,包括周期性间歇性、季节性间歇性和永久流动的河流。在采样期间,24 个流(记录流的 80%)至少干燥一次。主成分分析和广义加法模型表明,平均温度低、电导率高(地下水供给)的高山溪流容易出现永久性流动,而平均温度较高、电导率低(冰川供给)的溪流通常具有间歇性流动。事实证明,现场传感器可以精确地同时测量整个河网中的高分辨率流量间歇性、温度和水源。总体而言,这种方法提供了一种开发生态水文模型的有效方法,该模型检查流量间歇性对河流网络中生物多样性和生态系统功能的影响。天然间歇性河流和短暂溪流 (IRES) 会定期停止地表水流(Datry 等人,2017 年)。间歇性和短暂性水域至少占世界河流系统的 30%(Datry 等人,2014 年),而且很可能更高比例的低阶河流和源头在全球范围内具有间歇性地表流(Meyer 等人, 2007 年;Snelder 等人,2013 年)。在这种情况下,当今全球的水流状况正从多年生流态转变为间歇性流态,以响应土地利用和气候的变化(Leigh 等人,2016 年)。尽管自 1990 年代以来 IRES 的研究数量大幅增加,但在理解流量停止的变化如何影响流水方面仍然存在重大研究空白(Leigh 等人,2016 年;Stubbington 等人,2018 年)。推进 IRES 科学的部分复杂性是由于难以在地表流动停止的精细尺度上捕获高空间和时间分辨率数据(Costigan 等人,2017 年;Stubbington 等人,2018 年)。事实上,众所周知,IRES 在地表流动和干燥的频率、时间和持续时间方面表现出很大的变化(Costigan 等人,2017 年)。特别是在低阶河流和源头,地表水流可以在非常精细的时间和空间尺度上停止和恢复(Gomi 等人,2002 年)。因此,表征 IRES 内流量变化的这一关键方面及其驱动因素,是了解河流生物多样性和生态系统过程如何对地表流量停止做出反应的重要第一步,尤其是在容易发生环境变化的地区。一些研究最少的 IRES 发生在高山集水区(Robinson 等人,2007 年)。2016)。由于冰川融化、雪融化、地下水和降水贡献的高度景观异质性和季节性变化,高山溪流表现出很大的流动状态变化(Malard 等人,1999 年;Brown 等人,2003 年;Robinson 等人,2016 年)。此外,广阔的景观梯度、浅层含水层和有限的瞬态蓄水可能会产生闪流和相对较高比例的自然间歇性源头(马拉德等人,2000 年;罗宾逊和马塔伊 2007 年;罗宾逊等人,2016 年)。虽然会出现流量间歇性 *通讯方式:amael.paillex@hispeed.ch 其他支持信息可在本文的在线版本中找到。由于冰川融化、雪融化、地下水和降水贡献的高度景观异质性和季节性变化,高山溪流表现出很大的流动状态变化(Malard 等人,1999 年;Brown 等人,2003 年;Robinson 等人,2016 年)。此外,广阔的景观梯度、浅层含水层和有限的瞬态蓄水创造了闪流的潜力和相对较高比例的自然间歇性源头(Malard 等人,2000;Robinson 和 Matthaei 2007;Robinson 等人,2016)。虽然会出现流量间歇性 *通讯方式:amael.paillex@hispeed.ch 其他支持信息可在本文的在线版本中找到。由于冰川融化、雪融化、地下水和降水贡献的高度景观异质性和季节性变化,高山溪流表现出很大的流动状态变化(Malard 等人,1999 年;Brown 等人,2003 年;Robinson 等人,2016 年)。此外,广阔的景观梯度、浅层含水层和有限的瞬态蓄水创造了闪流的潜力和相对较高比例的自然间歇性源头(Malard 等人,2000;Robinson 和 Matthaei 2007;Robinson 等人,2016)。虽然会出现流量间歇性 *通讯方式:amael.paillex@hispeed.ch 其他支持信息可在本文的在线版本中找到。广阔的景观梯度、浅层含水层和有限的瞬态蓄水创造了闪流的潜力和相对较高比例的自然间歇性源头(Malard 等,2000;Robinson 和 Matthaei,2007;Robinson 等,2016)。虽然会出现流量间歇性 *通讯方式:amael.paillex@hispeed.ch 其他支持信息可在本文的在线版本中找到。广阔的景观梯度、浅层含水层和有限的瞬态蓄水创造了闪流的潜力和相对较高比例的自然间歇性源头(Malard 等,2000;Robinson 和 Matthaei,2007;Robinson 等,2016)。虽然会出现流量间歇性 *通讯方式:amael.paillex@hispeed.ch 其他支持信息可在本文的在线版本中找到。
更新日期:2019-09-30
down
wechat
bug