当前位置: X-MOL 学术J. Radiat. Res. Appl. Sci. › 论文详情
Determining the photon interaction parameters of iodine compounds as contrast agents for use in radiology
Journal of Radiation Research and Applied Sciences ( IF 1.804 ) Pub Date : 2020-02-25 , DOI: 10.1080/16878507.2020.1731065
Tahir Çakır

ABSTRACT Purpose: x-ray contrast agents that contain iodine are commonly used for interventional and diagnostic procedures. To progress selective x-ray imaging, and discriminate the attenuating media, it is important to determine the absorption edge values and absorption features of the compounds used as contrast agents. For this purpose, μρ (mass attenuation coefficients), Zeff (effective atomic number) and Nel (electron density), which characterize the possibility of interaction with x-ray of iodine containing contrast agents (ICCAs: Iodixanol, Iohexol, Iopamidol, Iopromide, and Ioxagalete) were calculated using WinXCom code and Penelope Monte Carlo simulation programs. Materials and methods: Calculations were obtained in an energy range from 1keV to 1GeV. The values of Zeff and Nel were calculated using the µρ values of compounds. Variation in μρ, Zeff, and Nel values of the ICCAs were determined depend on x-ray energies. Results and discussion: It was determined that in the low energy region, where the probability of photoelectric absorption was high. In the intermediate energy region, where the compton scattering process occurs. Additionally, an increase was observed in the potential for pair production effect in the presence of high energy values. Moreover, since Z4-5 depended on the photoelectric effect, the cross-section significantly contributed to the Zeff values of the ICCAs; the highest values for Zeff and Nel were observed in low energy ranges. Furthermore, the results obtained from the two different code programs were similar to one another. Conclusion: The results of this study may be useful for determining the accuracy of the Zeff and Nel values of ICCAs using dual energy CT. As such, this research can contribute to developing a method for enhancing CT image quality.
更新日期:2020-04-20

 

全部期刊列表>>
AI核心技术
10years
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
廖矿标
李远
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug