当前位置: X-MOL 学术Int. J. Engine Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessment of the validity of RANS knock prediction using the resonance theory
International Journal of Engine Research ( IF 2.2 ) Pub Date : 2019-05-08 , DOI: 10.1177/1468087419846032
Corinna Netzer 1 , Lars Seidel 2 , Frédéric Ravet 3 , Fabian Mauss 1
Affiliation  

Following the resonance theory by Bradley and co-workers, engine knock is a consequence of an auto-ignition in the developing detonation regime. Their detonation diagram was developed using direct numerical simulations and was applied in the literature to engine knock assessment using large eddy simulations. In this work, it is analyzed if the detonation diagram can be applied for post-processing and evaluation of predicted auto-ignitions in Reynolds-averaged Navier–Stokes simulations even though the Reynolds-averaged Navier–Stokes approach cannot resolve the fine structures resolved in direct numerical simulations and large eddy simulations that lead to the prediction of a developing detonation. For this purpose, an engine operating point at the knock limit spark advance is simulated using Reynolds-averaged Navier–Stokes and large eddy simulations. The combustion is predicted using the G-equation and the well-stirred reactor model in the unburnt gases based on a detailed gasoline surrogate reaction scheme. All the predicted ignition kernels are evaluated using the resonance theory in a post-processing step. According to the different turbulence models, the predicted pressure rise rates and gradients differ. However, the predicted ignition kernel sizes and imposed gas velocities by the auto-ignition event are similar, which suggests that the auto-ignitions predicted by Reynolds-averaged Navier–Stokes simulations can be given a meaningful interpretation within the detonation diagram.

中文翻译:

使用共振理论评估 RANS 爆震预测的有效性

根据 Bradley 及其同事的共振理论,发动机爆震是爆炸过程中自燃的结果。它们的爆震图是使用直接数值模拟开发的,并在文献中使用大涡模拟进行发动机爆震评估。在这项工作中,分析了爆震图是否可以应用于雷诺平均 Navier-Stokes 模拟中预测自燃的后处理和评估,即使雷诺平均 Navier-Stokes 方法不能解决在直接数值模拟和大涡模拟,导致预测发展中的爆炸。以此目的,使用雷诺平均 Navier-Stokes 和大涡模拟来模拟爆震极限点火提前的发动机工作点。基于详细的汽油替代反应方案,使用 G 方程和未燃烧气体中的充分搅拌反应器模型预测燃烧。在后处理步骤中使用共振理论评估所有预测的点火内核。根据不同的湍流模型,预测的压力上升率和梯度不同。然而,自燃事件预测的点火内核尺寸和施加的气体速度是相似的,这表明雷诺平均 Navier-Stokes 模拟预测的自燃可以在爆轰图中给出有意义的解释。基于详细的汽油替代反应方案,使用 G 方程和未燃烧气体中的充分搅拌反应器模型预测燃烧。在后处理步骤中使用共振理论评估所有预测的点火内核。根据不同的湍流模型,预测的压力上升率和梯度不同。然而,自燃事件预测的点火内核尺寸和施加的气体速度是相似的,这表明雷诺平均 Navier-Stokes 模拟预测的自燃可以在爆轰图中给出有意义的解释。基于详细的汽油替代反应方案,使用 G 方程和未燃烧气体中的充分搅拌反应器模型预测燃烧。在后处理步骤中使用共振理论评估所有预测的点火内核。根据不同的湍流模型,预测的压力上升率和梯度不同。然而,自燃事件预测的点火内核尺寸和施加的气体速度是相似的,这表明雷诺平均 Navier-Stokes 模拟预测的自燃可以在爆轰图中给出有意义的解释。根据不同的湍流模型,预测的压力上升率和梯度不同。然而,自燃事件预测的点火内核尺寸和施加的气体速度是相似的,这表明雷诺平均 Navier-Stokes 模拟预测的自燃可以在爆轰图中给出有意义的解释。根据不同的湍流模型,预测的压力上升率和梯度不同。然而,自燃事件预测的点火内核尺寸和施加的气体速度是相似的,这表明雷诺平均 Navier-Stokes 模拟预测的自燃可以在爆轰图中给出有意义的解释。
更新日期:2019-05-08
down
wechat
bug