当前位置: X-MOL 学术IEEE Trans. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Polymer-Nanocrystal Nanocomposites: Device Concepts in Capacitors and Multiferroics
IEEE Transactions on Nanotechnology ( IF 2.1 ) Pub Date : 2020-01-01 , DOI: 10.1109/tnano.2019.2939093
Frederick A. Pearsall , Julien Lombardi , Nasim Farahmand , Barry van Tassel , Eli S. Leland , Limin Huang , Shuangyi Liu , Shyuan Yang , Chengrui Le , Ioannis Kymissis , Peter Kinget , Seth R. Sanders , Daniel Steingart , Stephen O'Brien

Nanotechnology offers a variety of pathways to novel and low cost device fabrication for a future that will undoubtedly contain literally billions of ubiquitous electronic devices. Nanocomposite metal−insulator−metal (MIM) capacitors are of interest due to the possibility of reducing the number of discrete components in printed circuit boards, and alternatively using embedded or directly printed capacitors for nanopackaging in conjunction with integrated circuits. Flexible substrates also become candidates when employing low processing temperatures. In addition to compatibility with nanomanufacturing, the prospect of designing a nanocomposite dielectric, by combining colloidal nanoparticle fillers and polymer hosts, lends itself very well to the idea of tunability of the mechanical and electrical properties. In exploring combinations of complex oxide materials and polymers, the field goes beyond simple capacitors, towards multiferroic devices in which the potential overlap of magnetic permeability with permittivity can produce enactable devices for magnetodielectrics and magnetoelectrics. Our work in solution processing of inorganic oxide dielectrics and multiferroics, using a modified sol-gel approach allows for the preparation of a variety of formulations that can be treated as inks for deposition as layers and/or for the design of novel nanocomposite films. Starting with high dielectric materials, we discuss nanocomposite capacitance based energy storage, and progress to materials development for multiferroic nanocomposites.

中文翻译:

聚合物-纳米晶体纳米复合材料:电容器和多铁性器件中的器件概念

纳米技术为未来的新型和低成本设备制造提供了多种途径,未来无疑将包含数十亿个无处不在的电子设备。纳米复合金属-绝缘体-金属 (MIM) 电容器很受关注,因为它可以减少印刷电路板中分立元件的数量,或者使用嵌入式或直接印刷电容器与集成电路结合进行纳米封装。当采用低加工温度时,柔性基板也成为候选材料。除了与纳米制造的兼容性外,通过将胶体纳米颗粒填料和聚合物主体相结合,设计纳米复合电介质的前景非常适合机械和电学特性的可调性。在探索复杂氧化物材料和聚合物的组合时,该领域超越了简单的电容器,转向多铁性器件,其中磁导率与介电常数的潜在重叠可以产生可用于磁电介质和磁电的器件。我们在无机氧化物电介质和多铁性材料的溶液加工方面的工作,使用改进的溶胶-凝胶方法可以制备各种配方,这些配方可以作为油墨处理,用于作为层沉积和/或用于设计新型纳米复合薄膜。我们从高介电材料开始,讨论基于纳米复合电容的储能,以及多铁性纳米复合材料的材料开发进展。多铁性器件,其中磁导率与介电常数的潜在重叠可以产生可用于磁电介质和磁电的器件。我们在无机氧化物电介质和多铁性材料的溶液加工方面的工作,使用改进的溶胶-凝胶方法可以制备各种配方,这些配方可以作为油墨处理,用于作为层沉积和/或用于设计新型纳米复合薄膜。我们从高介电材料开始,讨论基于纳米复合电容的储能,以及多铁性纳米复合材料的材料开发进展。多铁性器件,其中磁导率与介电常数的潜在重叠可以产生可用于磁电介质和磁电的器件。我们在无机氧化物电介质和多铁性材料的溶液加工方面的工作,使用改进的溶胶-凝胶方法可以制备各种配方,这些配方可以作为油墨处理,用于作为层沉积和/或用于设计新型纳米复合薄膜。我们从高介电材料开始,讨论基于纳米复合电容的储能,以及多铁性纳米复合材料的材料开发进展。使用改进的溶胶-凝胶方法可以制备各种配方,这些配方可以作为油墨处理,用于作为层沉积和/或用于设计新型纳米复合薄膜。我们从高介电材料开始,讨论基于纳米复合电容的储能,以及多铁性纳米复合材料的材料开发进展。使用改进的溶胶-凝胶方法可以制备各种配方,这些配方可以作为油墨处理,用于作为层沉积和/或用于设计新型纳米复合薄膜。我们从高介电材料开始,讨论基于纳米复合电容的储能,以及多铁性纳米复合材料的材料开发进展。
更新日期:2020-01-01
down
wechat
bug