当前位置: X-MOL 学术IEEE Trans. Biomed. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Intracardiac turbines suitable for catheter-based implantation - an approach to power battery- and leadless cardiac pacemakers?
IEEE Transactions on Biomedical Engineering ( IF 4.4 ) Pub Date : 2020-04-01 , DOI: 10.1109/tbme.2019.2932028
Andreas Haeberlin , Yannick Rosch , Maximilien Victor Tholl , Yvan Gugler , Jan Okle , Paul Philipp Heinisch , Tobias Reichlin , Jurgen Burger , Adrian Zurbuchen

Objective: Cardiac pacemakers are powered by batteries, which become exhausted after a few years. This is a problem in particular for leadless pacemakers as they are difficult to explant. Thus, autonomous devices powered by energy harvesters are desired. Methods: We developed an energy harvester for endocardial implantation. The device contains a microgenerator to convert a flexible turbine runner's rotation into electrical energy. The turbine runner is driven by the intracardiac blood flow; a magnetic coupling allows hermetical sealing. The energy harvester has a volume of 0.34 cm3 and a weight of 1.3 g. Computational simulations were performed to assess the hemodynamic impact of the implant. The device was studied on a mock circulation and an in vivo trial was performed in a domestic pig. Results: In this article, we show that an energy harvester with a 2-bladed 14-mm-diameter turbine runner delivers 10.2 ± 4.8 μW under realistic conditions (heart rate 80/min, stroke volume 75 ml) on the bench. An increased output power (>80 μW) and power density (237.1 μW/cm3) can be achieved by higher stroke volumes, increased heart rates, or larger turbine runners. The device was successfully implanted in vivo. Conclusion: The device is the first flow-based energy harvester suitable for catheter-based implantation and provides enough energy to power a leadless pacemaker. Significance: The high power density, the small volume, and the flexible turbine runner blades facilitate the integration of the energy harvester in a pacemaker. This would allow overcoming the need for batteries in leadless pacemakers.

中文翻译:

适合基于导管植入的心内涡轮机 - 一种动力电池和无引线心脏起搏器的方法?

目标:心脏起搏器由电池供电,电池会在几年后耗尽。这对于无引线起搏器来说尤其是一个问题,因为它们难以移植。因此,需要由能量收集器供电的自主设备。方法:我们开发了一种用于心内膜植入的能量采集器。该设备包含一个微型发电机,可将灵活的涡轮转轮的旋转转换为电能。涡轮由心内血流驱动;磁耦合允许密封。能量收集器的体积为 0.34 cm3,重量为 1.3 g。进行了计算模拟以评估植入物的血流动力学影响。该装置在模拟循环中进行了研究,并在一头家猪中进行了体内试验。结果:在本文中,我们展示了在工作台上的实际条件(心率 80/分钟,每搏输出量 75 毫升)下,带有 2 叶直径 14 毫米涡轮转轮的能量收集器可提供 10.2 ± 4.8 μW 的功率。增加的输出功率 (>80 μW) 和功率密度 (237.1 μW/cm3) 可以通过更高的每搏输出量、更高的心率或更大的涡轮转轮来实现。该装置已成功植入体内。结论:该设备是第一个适用于导管植入的基于流量的能量收集器,并提供足够的能量为无引线起搏器供电。意义:高功率密度、小体积和灵活的涡轮叶片有助于将能量收集器集成到起搏器中。这将有助于克服无铅起搏器对电池的需求。2 ± 4.8 μW 在实际条件下(心率 80/min,每搏输出量 75 ml)在工作台上。增加的输出功率 (>80 μW) 和功率密度 (237.1 μW/cm3) 可以通过更高的每搏输出量、更高的心率或更大的涡轮转轮来实现。该装置已成功植入体内。结论:该设备是第一个适用于导管植入的基于流量的能量收集器,并提供足够的能量为无引线起搏器供电。意义:高功率密度、小体积和灵活的涡轮叶片有助于将能量收集器集成到起搏器中。这将有助于克服无铅起搏器对电池的需求。2 ± 4.8 μW 在实际条件下(心率 80/分钟,每搏输出量 75 毫升)在工作台上。增加的输出功率 (>80 μW) 和功率密度 (237.1 μW/cm3) 可以通过更高的每搏输出量、更高的心率或更大的涡轮转轮来实现。该装置已成功植入体内。结论:该设备是第一个适用于导管植入的基于流量的能量收集器,并提供足够的能量为无引线起搏器供电。意义:高功率密度、小体积和灵活的涡轮叶片有助于将能量收集器集成到起搏器中。这将有助于克服无铅起搏器对电池的需求。1 μW/cm3) 可以通过更高的每搏输出量、更高的心率或更大的涡轮转轮来实现。该装置已成功植入体内。结论:该设备是第一个适用于导管植入的基于流量的能量收集器,并提供足够的能量为无引线起搏器供电。意义:高功率密度、小体积和灵活的涡轮叶片有助于将能量收集器集成到起搏器中。这将有助于克服无铅起搏器对电池的需求。1 μW/cm3) 可以通过更高的每搏输出量、更高的心率或更大的涡轮转轮来实现。该装置已成功植入体内。结论:该设备是第一个适用于导管植入的基于流量的能量收集器,并提供足够的能量为无引线起搏器供电。意义:高功率密度、小体积和灵活的涡轮叶片有助于将能量收集器集成到起搏器中。这将有助于克服无铅起搏器对电池的需求。意义:高功率密度、小体积和灵活的涡轮叶片有助于将能量收集器集成到起搏器中。这将有助于克服无铅起搏器对电池的需求。意义:高功率密度、小体积和灵活的涡轮叶片有助于将能量收集器集成到起搏器中。这将有助于克服无铅起搏器对电池的需求。
更新日期:2020-04-01
down
wechat
bug