Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integrated Control-Fluidic CoDesign Methodology for Paper-Based Digital Microfluidic Biochips
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ( IF 2.7 ) Pub Date : 2020-03-01 , DOI: 10.1109/tcad.2019.2894820
Qin Wang , Weiqing Ji , Zeyan Li , Haena Cheong , Oh-Sun Kwon , Hailong Yao , Tsung-Yi Ho , Kwanwoo Shin , Bing Li , Ulf Schlichtmann , Yici Cai

Paper-based digital microfluidic biochips (P-DMFBs) have recently emerged as a promising low-cost and fast-responsive platform for biochemical assays. In P-DMFBs, electrodes and control lines are printed on a piece of photograph paper using an inkjet printer and carbon nanotubes (CNTs) conductive ink. Compared with traditional digital microfluidic biochips (DMFBs), P-DMFBs enjoy significant advantages, such as faster in-place fabrication with printer and ink, lower costs, and better disposability. Since electrodes and CNT control lines are printed on the same side of this paper, a critical design challenge for P-DMFB is to prevent control interference between moving droplets and the voltages on CNT control lines. Control interference may result in unexpected droplet movements and thus incorrect assay outputs. To address this design challenge, a control-fluidic codesign methodology is proposed in this paper, along with two demonstrative design flows integrating both fluidic design and control design, i.e., the droplet-oriented codesign flow and the electrode-oriented codesign flow. The droplet-oriented flow is suitable for designing biochips with sparse electrodes and relatively larger number of droplets, whereas the electrode-oriented flow is suitable for biochips with dense electrodes and smaller number of droplets. The computational simulation results of real-life bioassays demonstrate the effectiveness of the proposed codesign flows.

中文翻译:

纸基数字微流控生物芯片的集成控制流控协同设计方法

基于纸张的数字微流体生物芯片 (P-DMFB) 最近已成为一种有前途的低成本和快速响应的生化分析平台。在 P-DMFB 中,电极和控制线使用喷墨打印机和碳纳米管 (CNT) 导电墨水打印在一张相纸上。与传统的数字微流控生物芯片 (DMFB) 相比,P-DMFB 具有显着的优势,例如使用打印机和墨水更快地就地制造、成本更低和更好的一次性使用。由于电极和 CNT 控制线印刷在本文的同一侧,P-DMFB 的一个关键设计挑战是防止移动液滴与 CNT 控制线上的电压之间的控制干扰。控制干扰可能会导致意外的液滴移动,从而导致不正确的测定输出。为了应对这一设计挑战,本文提出了一种控制流体协同设计方法,以及两个集成流体设计和控制设计的示范设计流程,即面向液滴的协同设计流程和面向电极的协同设计流程。面向液滴的流动适用于设计电极稀疏且液滴数量相对较多的生物芯片,而面向电极的流动适用于电极密集且液滴数量较少的生物芯片。真实生物测定的计算模拟结果证明了所提出的协同设计流程的有效性。面向液滴的流动适用于设计电极稀疏且液滴数量相对较多的生物芯片,而面向电极的流动适用于电极密集且液滴数量较少的生物芯片。真实生物测定的计算模拟结果证明了所提出的协同设计流程的有效性。面向液滴的流动适用于设计电极稀疏且液滴数量相对较多的生物芯片,而面向电极的流动适用于电极密集且液滴数量较少的生物芯片。真实生物测定的计算模拟结果证明了所提出的协同设计流程的有效性。
更新日期:2020-03-01
down
wechat
bug