当前位置: X-MOL 学术Biomed. Microdevices › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing droplet transition capabilities using sloped microfluidic channel geometry for stable droplet operation
Biomedical Microdevices ( IF 3.0 ) Pub Date : 2020-01-21 , DOI: 10.1007/s10544-019-0466-x
Jose A. Wippold , Can Huang , Dimitra Stratis-Cullum , Arum Han

Droplet-based microfluidics technology allows for the generation and control of droplets that function as independent chemical and biological reactors, enabling broad ranges of high-throughput assays. As more complex multi-step assays are being realized in droplet format, maintaining droplet stability throughout the assay becomes a critical requirement. Unfortunately, as droplets go through multiple manipulation steps, droplet breakage is commonly seen, especially where droplets have to go through sharp transitions in direction and shape. Standard microfabrication techniques typically result in inherent sharp geometry in Z-direction due to their two-dimensional fabrication nature. Recent advancement in micro- and nano- fabrication technology using two-photon polymerization (2PP) is enabling complex 3D microstructures with sub-micrometer resolution to be readily fabricated. Here, utilizing this microfabrication technique, we present a simple solution to the droplet stability challenge by utilizing sloped-geometry microfluidic channels to enable microdroplets to smoothly transition between microfluidic channels having two different heights without breakage. The technique and innovation demonstrated here have the potential to replace conventional droplet microfluidic device fabrication approaches and enable droplet microfluidic platforms to achieve significantly higher level of efficiency, accuracy, and stability never realized before.

中文翻译:

使用倾斜的微流体通道几何形状增强液滴过渡能力,以实现稳定的液滴运行

基于液滴的微流控技术可产生和控制充当独立的化学和生物反应器的液滴,从而实现了广泛的高通量分析。随着以液滴形式实现更复杂的多步骤测定,在整个测定过程中保持液滴稳定性变得至关重要。不幸的是,当液滴经过多个操作步骤时,通常会看到液滴破裂,特别是在液滴必须经过方向和形状的急剧转变的情况下。由于其二维制造特性,标准的微制造技术通常会在Z方向上产生固有的尖锐几何形状。使用双光子聚合(2PP)的微米和纳米制造技术的最新进展使得能够容易地制造具有亚微米分辨率的复杂3D微观结构。在这里,利用这种微细加工技术,我们通过利用倾斜几何形状的微流体通道来使微滴能够平稳地在具有两个不同高度的微流体通道之间过渡而不会破裂,从而提出了一种解决液滴稳定性挑战的简单方法。此处展示的技术和创新有潜力取代传统的微滴微流控设备制造方法,并使微滴微流控平台能够实现前所未有的更高水平的效率,准确性和稳定性。我们通过利用倾斜几何形状的微流体通道来使微滴在具有两个不同高度的微流体通道之间平稳过渡而不会破裂,提出了一种解决液滴稳定性挑战的简单方法。此处展示的技术和创新有潜力取代传统的微滴微流控设备制造方法,并使微滴微流控平台能够实现前所未有的更高水平的效率,准确性和稳定性。我们通过利用倾斜几何形状的微流体通道来使微滴在具有两个不同高度的微流体通道之间平稳过渡而不会破裂,提出了一种解决液滴稳定性挑战的简单方法。此处展示的技术和创新有潜力取代传统的微滴微流控设备制造方法,并使微滴微流控平台能够实现前所未有的更高水平的效率,准确性和稳定性。
更新日期:2020-01-21
down
wechat
bug