当前位置: X-MOL 学术Comput. Biol. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A diffeomorphic unsupervised method for deformable soft tissue image registration.
Computers in Biology and Medicine ( IF 7.0 ) Pub Date : 2020-03-20 , DOI: 10.1016/j.compbiomed.2020.103708
Shuo Zhang 1 , Peter Xiaoping Liu 2 , Minhua Zheng 1 , Wen Shi 1
Affiliation  

BACKGROUND AND OBJECTIVES The image registration methods for deformable soft tissues utilize nonlinear transformations to align a pair of images precisely. In some situations, when there is huge gray scale difference or large deformation between the images to be registered, the deformation field tends to fold at some local voxels, which will result in the breakdown of the one-to-one mapping between images and the reduction of invertibility of the deformation field. In order to address this issue, a novel registration approach based on unsupervised learning is presented for deformable soft tissue image registration. METHODS A novel unsupervised learning based registration approach, which consists of a registration network, a velocity field integration module and a grid sampling module, is presented for deformable soft tissue image registration. The main contributions are: (1) A novel encoder-decoder network is presented for the evaluation of stationary velocity field. (2) A Jacobian determinant based penalty term (Jacobian loss) is developed to reduce the folding voxels and to improve the invertibility of the deformation field. RESULTS AND CONCLUSIONS The experimental results show that a new pair of images can be accurately registered using the trained registration model. In comparison with the conventional state-of-the-art method, SyN, the invertibility of the deformation field, accuracy and speed are all improved. Compared with the deep learning based method, VoxelMorph, the proposed method improves the invertibility of the deformation field.

中文翻译:

一种用于变形软组织图像配准的微分形无监督方法。

背景和目的用于可变形软组织的图像配准方法利用非线性变换来精确对准一对图像。在某些情况下,当要配准的图像之间存在巨大的灰度差异或较大的变形时,变形场倾向于在某些局部体素处折叠,这将导致图像与图像之间的一对一映射崩溃。减少变形场的可逆性。为了解决这个问题,提出了一种基于无监督学习的新颖的配准方法,用于可变形软组织图像配准。方法提出了一种新的基于无监督学习的配准方法,该方法由配准网络,速度场积分模块和网格采样模块组成,用于可变形软组织图像配准。主要的贡献是:(1)提出了一种新颖的编码器-解码器网络,用于评估静止速度场。(2)建立了基于雅可比行列式的惩罚项(雅可比损失),以减少折叠体素并提高变形场的可逆性。结果与结论实验结果表明,使用训练后的配准模型可以准确地配准一对新图像。与传统的最新方法SyN相比,变形场的可逆性,准确性和速度都得到了改善。与基于深度学习的方法VoxelMorph相比,该方法提高了变形场的可逆性。(2)建立了基于雅可比行列式的惩罚项(雅可比损失),以减少折叠体素并提高变形场的可逆性。结果与结论实验结果表明,使用训练后的配准模型可以准确地配准一对新图像。与传统的最新方法SyN相比,变形场的可逆性,准确性和速度都得到了改善。与基于深度学习的方法VoxelMorph相比,该方法提高了变形场的可逆性。(2)建立了基于雅可比行列式的惩罚项(雅可比损失),以减少折叠体素并提高变形场的可逆性。结果与结论实验结果表明,使用训练后的配准模型可以准确地配准一对新图像。与传统的最新方法SyN相比,变形场的可逆性,准确性和速度都得到了改善。与基于深度学习的方法VoxelMorph相比,该方法提高了变形场的可逆性。结果与结论实验结果表明,使用训练后的配准模型可以准确地配准一对新图像。与传统的最新方法SyN相比,变形场的可逆性,准确性和速度都得到了改善。与基于深度学习的方法VoxelMorph相比,该方法提高了变形场的可逆性。结果与结论实验结果表明,使用训练后的配准模型可以准确地配准一对新图像。与传统的最新方法SyN相比,变形场的可逆性,准确性和速度都得到了改善。与基于深度学习的方法VoxelMorph相比,该方法提高了变形场的可逆性。
更新日期:2020-04-20
down
wechat
bug