当前位置: X-MOL 学术Probab. Eng. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Data-driven uncertainty quantification and propagation in structural dynamics through a hierarchical Bayesian framework
Probabilistic Engineering Mechanics ( IF 2.6 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.probengmech.2020.103047
Omid Sedehi , Costas Papadimitriou , Lambros S. Katafygiotis

In the presence of modeling errors, the mainstream Bayesian methods seldom give a realistic account of uncertainties as they commonly underestimate the inherent variability of parameters. This problem is not due to any misconception in the Bayesian framework since it is absolutely robust with respect to the modeling assumptions and the observed data. Rather, this issue has deep roots in users' inability to develop an appropriate class of probabilistic models. This paper bridges this significant gap, introducing a novel Bayesian hierarchical setting, which breaks time-history vibrational responses into several segments so as to capture and identify the variability of inferred parameters over multiple segments. Since computation of the posterior distributions in hierarchical models is expensive and cumbersome, novel marginalization strategies, asymptotic approximations, and maximum a posteriori estimations are proposed and outlined under a computational algorithm aiming to handle both uncertainty quantification and propagation tasks. For the first time, the connection between the ensemble covariance matrix and hyper distribution parameters is characterized through approximate estimations. Experimental and numerical examples are employed to illustrate the efficacy and efficiency of the proposed method. It is observed that, when the segments correspond to various system conditions and input characteristics, the proposed method delivers robust parametric uncertainties with respect to unknown phenomena such as ambient conditions, input characteristics, and environmental factors.

中文翻译:

通过分层贝叶斯框架在结构动力学中进行数据驱动的不确定性量化和传播

在存在建模错误的情况下,主流贝叶斯方法很少对不确定性给出真实的解释,因为它们通常低估了参数的固有可变性。这个问题不是由于贝叶斯框架中的任何误解造成的,因为它在建模假设和观察到的数据方面绝对稳健。相反,这个问题的根源在于用户无法开发适当类别的概率模型。本文弥合了这一重大差距,引入了一种新的贝叶斯分层设置,将时程振动响应分为几个部分,以便捕获和识别多个部分推断参数的可变性。由于分层模型中后验分布的计算既昂贵又麻烦,新的边缘化策略,在旨在处理不确定性量化和传播任务的计算算法下,提出并概述了渐近近似和最大后验估计。首次通过近似估计表征了集成协方差矩阵和超分布参数之间的联系。实验和数值例子被用来说明所提出方法的功效和效率。观察到,当段对应于各种系统条件和输入特性时,所提出的方法针对未知现象(例如环境条件、输入特性和环境因素)提供了稳健的参数不确定性。在旨在处理不确定性量化和传播任务的计算算法下提出并概述了最大后验估计。首次通过近似估计表征了集成协方差矩阵和超分布参数之间的联系。实验和数值例子被用来说明所提出方法的功效和效率。观察到,当段对应于各种系统条件和输入特性时,所提出的方法针对未知现象(例如环境条件、输入特性和环境因素)提供了稳健的参数不确定性。在旨在处理不确定性量化和传播任务的计算算法下提出并概述了最大后验估计。首次通过近似估计表征了集成协方差矩阵和超分布参数之间的联系。实验和数值例子被用来说明所提出方法的功效和效率。观察到,当段对应于各种系统条件和输入特性时,所提出的方法针对未知现象(例如环境条件、输入特性和环境因素)提供了稳健的参数不确定性。集成协方差矩阵和超分布参数之间的联系通过近似估计来表征。实验和数值例子被用来说明所提出的方法的功效和效率。观察到,当段对应于各种系统条件和输入特性时,所提出的方法针对未知现象(例如环境条件、输入特性和环境因素)提供了稳健的参数不确定性。集成协方差矩阵和超分布参数之间的联系通过近似估计来表征。实验和数值例子被用来说明所提出方法的功效和效率。观察到,当段对应于各种系统条件和输入特性时,所提出的方法针对未知现象(例如环境条件、输入特性和环境因素)提供了稳健的参数不确定性。
更新日期:2020-04-01
down
wechat
bug