当前位置: X-MOL 学术Perspect. Plant Ecol. Evol. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Clonality as a key but overlooked driver of biotic interactions in plants
Perspectives in Plant Ecology, Evolution and Systematics ( IF 3.6 ) Pub Date : 2020-01-14 , DOI: 10.1016/j.ppees.2020.125510
Anne-Kristel Bittebiere , Marie-Lise Benot , Cendrine Mony

Most plants are clonal i.e. able to laterally propagate by producing new genetically identical ramets connected by specialized clonal organs. Clonality determines ramet aggregation patterns, the presence of physical connections between ramets, the sharing of resources, hormones, and signaling molecules within the clonal fragment. We thus argue that clonal traits drive not only the individual plant fitness, but also the whole plant community assembly and ecosystem functioning through their involvement in plant biotic interactions with other micro- and macro-organisms. In an extensive literature review, we investigated how clonality influences a wide range of processes in space and over time, and subsequently affects biotic interactions. These processes occur both at the plant and the population levels, including spatial patterns of below- and aboveground organs, micro-environmental heterogeneity and genetic diversity. We highlight the responses of clonal plant traits to biotic interactions, and reciprocally, the effects of clonality on plant-plant, plant-animal (with herbivores, pollinators), and plant-microorganism interactions (with pathogens, mutualists). Based on this knowledge, we suggest future prospects are promising, in particular if clonal traits are integrated in studies of multitrophic level interactions, thereby enabling a new understanding of plant community assembly rules and the ability to predict changes in biodiversity due to modifications in biotic interactions.



中文翻译:

克隆性是植物中生物相互作用的关键但被忽视的驱动力

大多数植物是克隆性的,即能够通过产生由专门的克隆器官连接的新的遗传上相同的分株而横向繁殖。克隆性决定分株聚集模式,分株之间物理连接的存在,资源,激素和克隆片段内信号分子的共享。因此,我们认为克隆性状不仅通过参与植物与其他微生物和宏观生物的生物相互作用,还可以驱动单个植物的适应能力,还可以驱动整个植物群落的组装和生态系统的功能。在广泛的文献综述中,我们研究了克隆性如何影响空间中的各种过程以及随着时间的流逝,进而影响生物相互作用。这些过程发生在工厂和人口层面,包括地下和地下器官的空间格局,微环境异质性和遗传多样性。我们重点介绍了克隆植物性状对生物相互作用的响应,以及相反,克隆性对植物-植物,植物-动物(与食草动物,传粉媒介)和植物-微生物相互作用(与病原体,互惠生)的影响。基于此知识,我们建议未来的前景是有希望的,特别是如果将克隆性状整合到多营养水平相互作用的研究中,从而使人们对植物群落装配规则有了新的认识,并能够预测由于生物相互作用的改变而导致的生物多样性变化。克隆性对植物-植物,植物-动物(与食草动物,传粉媒介)和植物-微生物相互作用(与病原体,互惠生)的影响。基于此知识,我们建议未来的前景是有希望的,特别是如果将克隆性状整合到多营养水平相互作用的研究中,则可以使人们对植物群落装配规则有新的认识,并能够预测由于生物相互作用的改变而导致的生物多样性变化。克隆性对植物-植物,植物-动物(与食草动物,传粉媒介)和植物-微生物相互作用(与病原体,互惠生)的影响。基于此知识,我们建议未来的前景是有希望的,特别是如果将克隆性状整合到多营养水平相互作用的研究中,则可以使人们对植物群落装配规则有新的认识,并能够预测由于生物相互作用的改变而导致的生物多样性变化。

更新日期:2020-03-27
down
wechat
bug