当前位置: X-MOL 学术Mater. Today Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Polyanion-type electrode materials for advanced sodium-ion batteries
Materials Today Nano ( IF 8.2 ) Pub Date : 2020-01-17 , DOI: 10.1016/j.mtnano.2020.100072
L.N. Zhao , T. Zhang , H.L. Zhao , Y.L. Hou

Electrical energy storage (EES) exploiting secondary battery technologies is ideal for large-scale energy storage needs due to the rapid growth in proliferation of renewable energy sources and the emerging markets of grid-scale battery applications. Sodium-ion batteries (SIBs), a more sustainable EES option alternative to lithium-ion batteries (LIBs), have attracted intensive interests over the past decade, because of the natural abundance, evenly geographical-distributed Na-source, significantly low cost, and environmental benignity. Polyanionic compounds offer an appealing combination of rich structural diversity, superior ionic conductivity, high structural and thermal stability, and convenient storage/handling, making them competitive and attractive candidate electrode materials for next generation energy storage systems. In this review, recent advancements made regarding polyanion-type electrodes used for SIBs are summarized, elaborating their intrinsic structural characteristics, electrochemical properties, and corresponding sodium-storage mechanisms. Furthermore, we highlight the recent achievements in the lab-scale Na-ion full-cell prototypes that consist of polyanion-type compounds as one or both working electrodes. Last but not least, challenges and outlooks on further optimization of the structure and the electrochemical performance of polyanion-type electrode materials for SIBs are also presented to provide some insights to facilitate the practical realization of sodium-ion technologies.



中文翻译:

用于高级钠离子电池的聚阴离子型电极材料

由于可再生能源的激增和网格规模电池应用的新兴市场的迅速发展,利用二次电池技术的电能存储(EES)非常适合大规模储能需求。钠离子电池(SIB)是替代锂离子电池(LIB)的更具可持续性的EES替代品,在过去十年中,由于自然资源丰富,地理分布均匀的Na源,低成本,和环境良性。聚阴离子化合物具有丰富的结构多样性,优异的离子电导率,较高的结构和热稳定性以及方便的存储/处理的吸引力组合,使其成为下一代能量存储系统的有竞争力和有吸引力的候选电极材料。在这篇评论中 总结了有关用于SIB的聚阴离子型电极的最新进展,阐述了其固有的结构特征,电化学性能以及相应的钠存储机理。此外,我们重点介绍了实验室规模的Na-ion全细胞原型的最新成就,该原型由聚阴离子型化合物作为一个或两个工作电极组成。最后但并非最不重要的一点是,还提出了进一步优化用于SIB的聚阴离子型电极材料的结构和电化学性能的挑战和展望,以提供一些见识,以促进钠离子技术的实际实现。以及相应的钠存储机制。此外,我们重点介绍了实验室规模的Na-ion全细胞原型的最新成就,该原型由聚阴离子型化合物作为一个或两个工作电极组成。最后但并非最不重要的一点是,还提出了进一步优化SIB的聚阴离子型电极材料的结构和电化学性能的挑战和展望,以提供一些见识,以促进钠离子技术的实际实现。以及相应的钠存储机制。此外,我们重点介绍了实验室规模的Na-ion全细胞原型的最新成就,该原型由聚阴离子型化合物作为一个或两个工作电极组成。最后但并非最不重要的一点是,还提出了进一步优化SIB的聚阴离子型电极材料的结构和电化学性能的挑战和展望,以提供一些见识,以促进钠离子技术的实际实现。

更新日期:2020-01-17
down
wechat
bug