当前位置: X-MOL 学术Geochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Formation of disk- and bowl-shaped igneous Ca,Al-rich inclusions: Constraints from their morphology, textures, mineralogy and modelling
Geochemistry ( IF 2.6 ) Pub Date : 2019-08-19 , DOI: 10.1016/j.chemer.2019.07.005
C. Lorenz , M. Ivanova , A. Krot , V. Shuvalov

Calcium-aluminum-rich inclusions (CAIs) are the oldest Solar System solids dated that formed by evaporation, condensation, aggregation and, sometimes, melting processes near the protoSun, and were subsequently dispersed throughout the protoplanetary disk by still poorly-understood mechanism(s). Here we report on the discovery of disk- and bowl-shaped centimeter-sized igneous CAIs in CV (Vigarano type) carbonaceous chondrites. Igneous CAIs of these shapes are not expected for crystallization of melt droplets in a low gravity field of the protoplanetary disk. We have tested several models for the formation of disk- and bowl-shaped igneous CAIs including: collision, aerodynamic deformation and shock flattening. We conclude that these CAIs resulted from aerodynamic deformation of CAI-like melt droplets and propose the following multistage formation scenario: (1) nearly complete melting and acceleration of CAIs at <30 km/s in the CAI-forming region having approximately solar dust/gas ratio; (2) aerodynamic deformation, ablation, deceleration, solidification at ∼30–40 K/min, Wark-Lovering rims formation, and deceleration of the CAIs entering a dust-rich inner disk wall; (3) radial drift of the solidified deformed CAIs towards the Sun; (4) heating and partial melting of the deformed CAIs by solar radiation that preserve their morphology; (5) cooling and crystallization of CAIs at ∼2 K/h; (5) radial transport of CAIs from their formation region to the outer disk.



中文翻译:

盘状和碗状火成Ca,Al富集夹杂物的形成:受其形态,织构,矿物学和模型的限制

富含钙铝的夹杂物(CAI)是迄今为止太阳系中最古老的固体,是通过蒸发,凝结,聚集以及有时在原太阳附近的融化过程形成的,随后通过仍不为人所知的机制分散在整个原行星盘中)。在这里,我们报告在CV(Vigarano型)碳质球粒陨石中发现盘状和碗状厘米大小的火成岩CAI的情况。在原行星盘的低重力场中,不希望有这些形状的火成因的CAI使熔滴结晶。我们已经测试了用于形成盘形和碗形火成岩CAI的几种模型,包括:碰撞,空气动力学变形和减震。我们得出的结论是,这些CAI是由类CAI熔滴的空气动力学变形引起的,并提出了以下多阶段形成方案:(1)在CAI形成区域中,太阳尘/气比 (2)空气动力变形,消融,减速,以约30-40 K / min的速度凝固,形成Wark-Lovering轮缘以及进入粉尘丰富的内盘壁的CAI减速;(3)固化的变形CAI向太阳的径向漂移;(4)变形的CAI通过太阳辐射加热并部分熔化,从而保持其形态;(5)以约2 K / h的速度冷却和结晶CAI;(5)CAI从其形成区域向外盘的径向传输。在CAI形成区域的速度为30 km / s,具有大约太阳尘/气体比;(2)空气动力变形,消融,减速,以约30-40 K / min的速度凝固,形成Wark-Lovering轮缘以及进入充满粉尘的内盘壁的CAI减速;(3)固化的变形CAI向太阳的径向漂移;(4)变形的CAI通过太阳辐射加热并部分熔化,从而保持其形态;(5)以约2 K / h的速度冷却和结晶CAI;(5)CAI从其形成区域向外盘的径向传输。在CAI形成区域的速度为30 km / s,具有大约太阳尘/气体比;(2)空气动力变形,消融,减速,以约30-40 K / min的速度凝固,形成Wark-Lovering轮缘以及进入粉尘丰富的内盘壁的CAI减速;(3)固化的变形CAI向太阳的径向漂移;(4)变形的CAI通过太阳辐射加热并部分熔化,从而保持其形态;(5)以约2 K / h的速度冷却和结晶CAI;(5)CAI从其形成区域向外盘的径向传输。(4)变形的CAI通过太阳辐射加热并部分熔化,从而保持其形态;(5)以约2 K / h的速度冷却和结晶CAI;(5)CAI从其形成区域向外盘的径向传输。(4)变形的CAI通过太阳辐射加热并部分熔化,从而保持其形态;(5)以约2 K / h的速度冷却和结晶CAI;(5)CAI从其形成区域向外盘的径向传输。

更新日期:2020-04-21
down
wechat
bug