当前位置: X-MOL 学术J. Fluids Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrodynamic forces and moments due to interaction of linear water waves with truncated partial-porous cylinders in finite depth
Journal of Fluids and Structures ( IF 3.4 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.jfluidstructs.2020.102898
Abhijit Sarkar , Swaroop Nandan Bora

Abstract An exact analytical method is employed for studying the diffraction problems in an ocean due to the presence of a specific type of cylinders. In this current work, two models are studied: (i) a floating surface-piercing truncated partial-porous cylinder, (ii) a surface-piercing truncated partial-porous cylinder placed at the bottom. In both cases, the configuration of the composite cylinder is such that it consists of an impermeable inner cylinder rising above the free surface and a coaxial truncated porous cylinder around the lower part of the inner cylinder with the top of the porous cylinder being impermeable. By using linear water wave theory, a three-dimensional representation of the problem is developed based on eigenfunction expansion method. The condition on the porous boundary is defined by applying Darcy’s law. Pressure and velocity satisfy continuity conditions across the linear interface between the adjacent fluid domains. Hydrodynamic force, moment and wave run-up are calculated by using the velocity potentials. Comparisons are carried out with results of wave diffraction by a floating and bottom-mounted compound cylinder, i.e., when the whole cylinder is non-porous. Handy agreements are observed from these comparisons. Through numerical tests, various experiments are carried out to investigate the impact of various parameters, such as porous coefficients, draft ratio, the ratio of inner and outer radii, the water depth etc., on hydrodynamic force, moment and wave run-up. The results clearly indicate that an appropriate optimal ratio for various parameters may be considered in designing practical ocean structures with minimum adverse hydrodynamic effect. The appearance of resonance in the results and role of porosity in mitigating resonance effect are explained. Proposal to select various appropriate parameters for the best possible effect is put forward.
更新日期:2020-04-01
down
wechat
bug