当前位置: X-MOL 学术Appl. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles
Applied Thermal Engineering ( IF 6.1 ) Pub Date : 2020-04-08 , DOI: 10.1016/j.applthermaleng.2020.115280
Hamidreza Behi , Danial Karimi , Mohammadreza Behi , Morteza Ghanbarpour , Joris Jaguemont , Mohsen Akbarzadeh Sokkeh , Foad Heidari Gandoman , Maitane Berecibar , Joeri Van Mierlo

This paper presents the concept of a hybrid thermal management system (TMS), including air cooling and heat pipe for electric vehicles (EVs). Mathematical and thermal models are described to predict the thermal behavior of a battery module consisting of 24 cylindrical cells. Details of various thermal management techniques, especially natural air cooling and forced-air cooling TMS are discussed and compared. Moreover, several optimizations comprising the effect of cell spacing, air velocity, different ambient temperatures, and adding a heat pipe with copper sheets (HPCS) are proposed. The mathematical models are solved by COMSOL Multiphysics®, the commercial computational fluid dynamics (CFD) software. The simulation results are validated against experimental data indicating that the proposed cooling method is robust to optimize the TMS with HPCS, which provides guidelines for further design optimization for similar systems. Results indicate that the maximum module temperature for the cooling strategy using forced-air cooling, heat pipe, and HPCS reaches 42.4 °C, 37.5 °C, and 37.1 °C which can reduce the module temperature compared with natural air cooling by up to 34.5%, 42.1%, and 42.7% respectively. Furthermore, there is 39.2%, 66.5%, and 73.4% improvement in the temperature uniformity of the battery module for forced-air cooling, heat pipe, and HPCS respectively.



中文翻译:

电动汽车空冷热管的锂离子电池热管理系统新概念

本文介绍了混合热管理系统(TMS)的概念,包括电动汽车的空气冷却和热管(EV)。描述了数学模型和热模型以预测由24个圆柱电池组成的电池模块的热行为。讨论并比较了各种热管理技术的细节,尤其是自然空气冷却和强制空气冷却TMS。此外,提出了几种优化方案,包括电池间距,空气速度,不同的环境温度以及增加带有铜片的热管(HPCS)的影响。数学模型由COMSOLMultiphysics®(商业计算流体动力学(CFD)软件)求解。根据实验数据验证了仿真结果,表明所提出的冷却方法对于用HPCS优化TMS具有鲁棒性,为进一步优化类似系统提供了指导。结果表明,采用强制风冷,热管和HPCS的冷却策略的最高模块温度分别达到42.4°C,37.5°C和37.1°C,与自然风冷相比,可以降低模块温度达34.5 %,42.1%和42.7%。此外,用于强制风冷,热管和HPCS的电池模块的温度均匀性分别提高了39.2%,66.5%和73.4%。分别为42.1%和42.7%。此外,用于强制风冷,热管和HPCS的电池模块的温度均匀性分别提高了39.2%,66.5%和73.4%。分别为42.1%和42.7%。此外,用于强制风冷,热管和HPCS的电池模块的温度均匀性分别提高了39.2%,66.5%和73.4%。

更新日期:2020-04-08
down
wechat
bug