当前位置: X-MOL 学术arXiv.cs.SY › 论文详情
Learning Control Barrier Functions from Expert Demonstrations
arXiv - CS - Systems and Control Pub Date : 2020-04-07 , DOI: arxiv-2004.03315
Alexander Robey; Haimin Hu; Lars Lindemann; Hanwen Zhang; Dimos V. Dimarogonas; Stephen Tu; Nikolai Matni

Inspired by the success of imitation and inverse reinforcement learning in replicating expert behavior through optimal control, we propose a learning based approach to safe controller synthesis based on control barrier functions (CBFs). We consider the setting of a known nonlinear control affine dynamical system and assume that we have access to safe trajectories generated by an expert - a practical example of such a setting would be a kinematic model of a self-driving vehicle with safe trajectories (e.g. trajectories that avoid collisions with obstacles in the environment) generated by a human driver. We then propose and analyze an optimization-based approach to learning a CBF that enjoys provable safety guarantees under suitable Lipschitz smoothness assumptions on the underlying dynamical system. A strength of our approach is that it is agnostic to the parameterization used to represent the CBF, assuming only that the Lipschitz constant of such functions can be efficiently bounded. Furthermore, if the CBF parameterization is convex, then under mild assumptions, so is our learning process. We end with extensive numerical evaluations of our results on both planar and realistic examples, using both random feature and deep neural network parameterizations of the CBF. To the best of our knowledge, these are the first results that learn provably safe control barrier functions from data.
更新日期:2020-04-08

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug