当前位置: X-MOL 学术arXiv.cs.SY › 论文详情
State Space Advanced Fuzzy Cognitive Map approach for automatic and non Invasive diagnosis of Coronary Artery Disease
arXiv - CS - Systems and Control Pub Date : 2020-04-03 , DOI: arxiv-2004.03372
Ioannis D. Apostolopoulos; Peter P. Groumpos; Dimitris I. Apostolopoulos

Purpose: In this study, the recently emerged advances in Fuzzy Cognitive Maps (FCM) are investigated and employed, for achieving the automatic and non-invasive diagnosis of Coronary Artery Disease (CAD). Methods: A Computer-Aided Diagnostic model for the acceptable and non-invasive prediction of CAD using the State Space Advanced FCM (AFCM) approach is proposed. Also, a rule-based mechanism is incorporated, to further increase the knowledge of the system and the interpretability of the decision mechanism. The proposed method is tested utilizing a CAD dataset from the Laboratory of Nuclear Medicine of the University of Patras. More specifically, two architectures of AFCMs are designed, and different parameter testing is performed. Furthermore, the proposed AFCMs, which are based on the new equations proposed recently, are compared with the traditional FCM approach. Results: The experiments highlight the effectiveness of the AFCM approach and the new equations over the traditional approach, which obtained an accuracy of 78.21%, achieving an increase of seven percent (+7%) on the classification task, and obtaining 85.47% accuracy. Conclusions: It is demonstrated that the AFCM approach in developing Fuzzy Cognitive Maps outperforms the conventional approach, while it constitutes a reliable method for the diagnosis of Coronary Artery Disease. Conclusions and future research related to recent pandemic of coronavirus are provided.
更新日期:2020-04-08

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug