当前位置: X-MOL 学术IEEE Trans. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Universal Flying Objects: Modular Multirotor System for Flight of Rigid Objects
IEEE Transactions on Robotics ( IF 9.4 ) Pub Date : 2020-04-01 , DOI: 10.1109/tro.2019.2954679
Bingguo Mu , Pakpong Chirarattananon

In this article, we introduce Universal Flying Objects—a modular aerial robotic platform for transforming a rigid object into a multirotor robot. To achieve this, we develop flight modules, in the form of a control module and propelling modules that can be affixed to an object. The object, or payload, serves as the airframe of the vehicle. The modular design produces a highly versatile platform as it is reconfigurable by the addition or removal of flight modules, adjustment of the modules’ arrangement, or change of payloads. To facilitate the flight control, we propose an inertial measurement unit (IMU)-based estimation strategy for rapid computation of the robot's configuration. When combined with the adaptive geometric controller for further refinement of uncertain parameters, stable flights are accomplished with minimal manual intervention or tuning required by a user. To this end, we demonstrate hovering and trajectory tracking flights through various robot configurations with different dummy payloads, weighing $\approx$200–800 g, using four to eight propelling modules. The results reveal that stable flights are attainable thanks to the proposed IMU-based estimation method. The flight performance is markedly improved over time through the adaptive scheme, with position errors of a few centimeters after the parameter convergence.

中文翻译:

Universal Flying Objects:用于刚性物体飞行的模块化多旋翼系统

在本文中,我们介绍了 Universal Flying Objects——一种模块化空中机器人平台,用于将刚性物体转换为多旋翼机器人。为实现这一目标,我们开发了飞行模块,以控制模块和可固定在物体上的推进模块的形式。物体或有效载荷用作车辆的机身。模块化设计产生了一个高度通用的平台,因为它可以通过添加或移除飞行模块、调整模块布置或改变有效载荷来重新配置。为了便于飞行控制,我们提出了一种基于惯性测量单元(IMU)的估计策略,用于快速计算机器人的配置。当结合自适应几何控制器进一步细化不确定参数时,稳定飞行是通过用户所需的最少手动干预或调整来实现的。为此,我们通过具有不同虚拟有效载荷的各种机器人配置演示悬停和轨迹跟踪飞行,使用四到八个推进模块,重量约为 200-800 克。结果表明,由于所提出的基于 IMU 的估计方法,可以实现稳定的飞行。通过自适应方案,随着时间的推移,飞行性能得到显着改善,参数收敛后位置误差只有几厘米。结果表明,由于所提出的基于 IMU 的估计方法,可以实现稳定的飞行。通过自适应方案,随着时间的推移,飞行性能得到显着改善,参数收敛后位置误差只有几厘米。结果表明,由于所提出的基于 IMU 的估计方法,可以实现稳定的飞行。通过自适应方案,随着时间的推移,飞行性能得到显着改善,参数收敛后位置误差只有几厘米。
更新日期:2020-04-01
down
wechat
bug