当前位置: X-MOL 学术Inform. Sci. › 论文详情
Knowledge Base Enrichment by Relation Learning from Social Tagging Data
Information Sciences ( IF 5.524 ) Pub Date : 2020-04-06 , DOI: 10.1016/j.ins.2020.04.002
Hang Dong; Wei Wang; Frans Coenen; Kaizhu Huang

There has been considerable interest in transforming unstructured social tagging data into structured knowledge for semantic-based retrieval and recommendation. Research in this line mostly exploits data co-occurrence and often overlooks the complex and ambiguous meanings of tags. Furthermore, there have been few comprehensive evaluation studies regarding the quality of the discovered knowledge. We propose a supervised learning method to discover subsumption relations from tags. The key to this method is quantifying the probabilistic association among tags to better characterise their relations. We further develop an algorithm to organise tags into hierarchies based on the learned relations. Experiments were conducted using a large, publicly available dataset, Bibsonomy, and three popular, human-engineered or data-driven knowledge bases: DBpedia, Microsoft Concept Graph, and ACM Computing Classification System. We performed a comprehensive evaluation using different strategies: relation-level, ontology-level, and knowledge base enrichment based evaluation. The results clearly show that the proposed method can extract knowledge of better quality than the existing methods against the gold standard knowledge bases. The proposed approach can also enrich knowledge bases with new subsumption relations, having the potential to significantly reduce time and human effort for knowledge base maintenance and ontology evolution.
更新日期:2020-04-08

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug