当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Tensor Rank and Complexity
arXiv - CS - Computational Complexity Pub Date : 2020-04-03 , DOI: arxiv-2004.01492
Giorgio Ottaviani; Philipp Reichenbach

These lecture notes are intended as an introduction to several notions of tensor rank and their connections to the asymptotic complexity of matrix multiplication. The latter is studied with the exponent of matrix multiplication, which will be expressed in terms of tensor (border) rank, (border) symmetric rank and the asymptotic rank of certain tensors. We introduce the multilinear rank of a tensor as well, deal with the concept of tensor equivalence and study prehomogeneous vector spaces with the Castling transform. Moreover, we treat Apolarity Theory and use it to determine the symmetric rank (Waring rank) of some symmetric tensors.
更新日期:2020-04-06

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug