当前位置: X-MOL 学术Laser Photonics Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced 2 µm Mid‐Infrared Laser Output from Tm3+‐Activated Glass Ceramic Microcavities
Laser & Photonics Reviews ( IF 11.0 ) Pub Date : 2020-04-06 , DOI: 10.1002/lpor.201900396
Shiliang Kang 1 , Tianchang Ouyang 1 , Dandan Yang 1 , Qiwen Pan 1 , Jianrong Qiu 2 , Guoping Dong 1
Affiliation  

Transparent glass ceramics (GCs) consisting of an homogeneous glass phase and a well‐dispersed crystal phase are considered as ideal optical gain materials potentially applied in optoelectronic devices due to the combination of facile processability of glass and the intense crystal field of nanocrystals. Here, a heat‐induced nanocrystal‐in‐glass method is employed to integrate the active ions Tm3+ into Bi2Te4O11 nanocrystals with an intense crystal field to realize an enhanced microlaser output. This strategy endows the efficient tellurate GC microcavity laser operating at ≈2 µm. Compared with the laser properties of as‐prepared glass microcavities, the pump threshold (260 µW) is as low as less than a quarter and the slope efficiency (0.0296%) is 5.5 times higher. Furthermore, by carefully engineering the heat treatment temperature and duration, the crystal size and distribution can be precisely controlled. Thus, the Rayleigh scattering loss that is detrimental to quality (Q) factor is effectively suppressed and the GC microcavities with high Q factors up to 105 are successfully obtained. This work provides useful insight on the development of optical functional materials and expands the practical applications of GC microcavities in various optoelectronic fields.

中文翻译:

Tm3 +激活的玻璃陶瓷微腔增强了2 µm中红外激光输出

由于玻璃的易加工性和纳米晶体的强晶场的结合,由均质玻璃相和均匀分散的晶相组成的透明玻璃陶瓷(GC)被认为是潜在地应用于光电器件的理想光学增益材料。在这里,采用热诱导玻璃纳米晶体方法将活性离子Tm 3+集成到Bi 2 Te 4 O 11中。具有强晶场的纳米晶体,可实现更高的微激光输出。这种策略使高效的碲化GC微腔激光器工作在≈2µm。与准备好的玻璃微腔的激光特性相比,泵浦阈值(260 µW)低至不足四分之一,斜率效率(0.0296%)高5.5倍。此外,通过精心设计热处理温度和持续时间,可以精确控制晶体的尺寸和分布。因此,有效地抑制了对质量(Q)因子有害的瑞利散射损失,并且具有高达10 5的Q因子的GC微腔成功获得。这项工作为光学功能材料的发展提供了有用的见识,并扩展了GC微腔在各种光电领域的实际应用。
更新日期:2020-04-06
down
wechat
bug