当前位置: X-MOL 学术J. Adv. Model. Earth Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Novel Framework to Study Trace Gas Transport in Deep Convective Clouds
Journal of Advances in Modeling Earth Systems ( IF 6.8 ) Pub Date : 2020-05-11 , DOI: 10.1029/2019ms001931
Roman Bardakov 1, 2 , Ilona Riipinen 2, 3 , Radovan Krejci 2, 3 , Julien Savre 4 , Joel A. Thornton 1, 2, 5 , Annica M. L. Ekman 1, 2
Affiliation  

Deep convective clouds reach the upper troposphere (8–15 km height). In addition to moisture and aerosol particles, they can bring aerosol precursor gases and other reactive trace gases from the planetary boundary layer to the cloud top. In this paper, we present a method to estimate trace gas transport based on the analysis of individual air parcel trajectories. Large eddy simulation of an idealized deep convective cloud was used to provide realistic environmental input to a parcel model. For a buoyant parcel, we found that the trace gas transport approximately follows one out of three scenarios, determined by a combination of the equilibrium vapor pressure (containing information about water‐solubility and pure component saturation vapor pressure) and the enthalpy of vaporization. In one extreme, the trace gas will eventually be completely removed by precipitation. In the other extreme, there is almost no vapor condensation on hydrometeors and most of the gas is transported to the top of the cloud. The scenario in between these two extremes is also characterized by strong gas condensation, but a small fraction of the trace gas may still be transported aloft. This approach confirms previously suggested patterns of inert trace gas behavior in deep convective clouds, agrees with observational data, and allows estimating transport in analytically simple and computationally efficient way compared to explicit cloud‐resolving model calculations.

中文翻译:

研究深对流云中痕量气体传输的新框架

较深的对流云到达对流层上部(高度8-15 km)。除了水分和气溶胶颗粒外,它们还可以将气溶胶前驱物气体和其他反应性痕量气体从行星边界层带到云顶。在本文中,我们提出了一种基于对单个空气包裹轨迹的分析来估算痕量气体传输的方法。理想化的深对流云的大涡模拟用于为包裹模型提供现实的环境输入。对于有浮力的包裹,我们发现痕量气体的输送大致遵循三种情况中的一种,这是由平衡蒸气压(包含有关水溶解度和纯组分饱和蒸气压的信息)和汽化焓共同决定的。在一个极端中,痕量气体最终将通过沉淀完全去除。在另一个极端中,在水凝物上几乎没有蒸汽凝结,大部分气体被输送到云层的顶部。在这两个极端之间的情况也以强烈的气体凝结为特征,但微量的微量气体仍可能在高空运输。该方法证实了先前建议的深对流云中惰性痕量气体行为的模式,与观测数据相符,并且与显式云解析模型计算相比,可以以分析简单和计算有效的方式估算运输量。在这两个极端之间的场景还具有强烈的气体凝结的特征,但是仍有少量微量气体可以在高空传输。该方法证实了先前建议的深对流云中惰性痕量气体行为的模式,与观测数据相符,并且与显式云解析模型计算相比,允许以分析简单和计算有效的方式估算传输。在这两个极端之间的情况也以强烈的气体凝结为特征,但微量的微量气体仍可能在高空运输。该方法证实了先前建议的深对流云中惰性痕量气体行为的模式,与观测数据相符,并且与显式云解析模型计算相比,可以以分析简单和计算有效的方式估算运输量。
更新日期:2020-05-11
down
wechat
bug