当前位置: X-MOL 学术Sci. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum biology revisited.
Science Advances ( IF 11.7 ) Pub Date : 2020-04-03 , DOI: 10.1126/sciadv.aaz4888
Jianshu Cao 1 , Richard J Cogdell 2 , David F Coker 3 , Hong-Guang Duan 4, 5, 6 , Jürgen Hauer 7 , Ulrich Kleinekathöfer 8 , Thomas L C Jansen 9 , Tomáš Mančal 10 , R J Dwayne Miller 4, 6, 11 , Jennifer P Ogilvie 12 , Valentyn I Prokhorenko 4 , Thomas Renger 13 , Howe-Siang Tan 14 , Roel Tempelaar 15 , Michael Thorwart 5, 6 , Erling Thyrhaug 7 , Sebastian Westenhoff 16 , Donatas Zigmantas 17
Affiliation  

Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.

中文翻译:


重新审视量子生物学。



光合作用是一个高度优化的过程,从中可以学到有关自然界运行原理的宝贵经验。其主要步骤涉及能量传输在接近理论量子效率极限的情况下运行。最近,自然界利用量子相干性来指导能量转移的假设激发了广泛的研究。这项工作是量子生物学领域的基石,依赖于对光合复合物二维电子光谱中小幅度振荡的解释。本综述讨论了重新审视这些主张的最新工作,并证明激子间相干性的寿命太短,在光合能量转移中没有任何功能意义。相反,观察到的长寿命相干性源自脉冲激发振动,通常在飞秒光谱中观察到。这些努力共同导致了对耗散的量子方面的更详细的理解。大自然并没有试图避免耗散,而是通过激子-浴相互作用的工程来利用它来创造有效的能量流。
更新日期:2020-04-06
down
wechat
bug