当前位置: X-MOL 学术J. Mater. Process. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microgroove grinding of monocrystalline diamond using medium-frequency vibration-assisted grinding with self-sensing grinding force technique
Journal of Materials Processing Technology ( IF 6.7 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.jmatprotec.2020.116686
Shun-Tong Chen , Yuan-Yu Chen

Abstract This study presents an approach to extra-hard material removal using "medium-frequency vibration-assisted grinding with self-sensing grinding force" for producing a microgroove array on monocrystalline diamond (MCD). Vibration mode at nano-amplitude is employed to vibrate the MCD workpiece against the polycrystalline composite diamond (PCD) wheel-tool during grinding. This approach is used to break the covalent atomic bonds of diamond, creating a "nanocracked subsurface layer" thereby reducing grinding resistance during material removal. The PZT stage’s grinding system is designed with a low center of gravity, bilateral symmetry, and an in-situ co-shaft grinding devise. This setup provides a well-defined nanoscale depth of grinding. Expentmental results show that a highly consistent, smooth crisscross microgroove array can be successfully produced on MCD with no apparent burrs and chipping. It is confirmed that "medium-frequency vibration-assisted grinding with self-sensing grinding force" remarkably reduces grinding resistance and improves the surface finish on a MCD workpiece. In addition, these experiements prove that diamond’s innate charateristic of "thin-brittle resistance" self-generates a "nanocrack growth resistance boundary" stopping further crack expansion. Using a "self-sensing grinding force" design allows the system to determine whether the "nanocracked subsurface layer" has been completely removed. This ensures high quality grinding, which produces a flat, solid microgroove surface on MCD. Furthermore, detailed discussions are conducted for the following aspects: effects of dressing using spark erosion, influences of amplitude and grinding mode, geometry and topography of microgrooves, PCD wheel tool wear, and an assesment criterion for available nasal-tip radius.

中文翻译:

中频振动辅助磨削自感应磨削力技术在单晶金刚石微槽磨削中的应用

摘要 本研究提出了一种使用“具有自感应磨削力的中频振动辅助磨削”在单晶金刚石 (MCD) 上产生微槽阵列去除超硬材料的方法。在磨削过程中,采用纳米振幅的振动模式使 MCD 工件相对于多晶复合金刚石 (PCD) 砂轮工具振动。这种方法用于破坏金刚石的共价原子键,形成“纳米裂纹亚表面层”,从而降低材料去除过程中的磨削阻力。PZT 平台的磨削系统设计为低重心、双边对称和原位联轴磨削装置。这种设置提供了明确的纳米级研磨深度。实验结果表明,高度一致的,可以在MCD上成功制作光滑的纵横交错的微槽阵列,没有明显的毛刺和碎屑。证实了“具有自感应磨削力的中频振动辅助磨削”显着降低了磨削阻力并改善了MCD工件的表面光洁度。此外,这些实验证明,金刚石固有的“抗薄脆”特性会自行生成“纳米裂纹生长阻力边界”,阻止裂纹进一步扩展。使用“自感应磨削力”设计,系统可以确定“纳米裂纹次表层”是否已完全去除。这确保了高质量的研磨,从而在 MCD 上产生平坦、坚固的微槽表面。此外,还针对以下几个方面进行了详细讨论:
更新日期:2020-08-01
down
wechat
bug