当前位置: X-MOL 学术Geoderma › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hyperspectral imaging for high-resolution mapping of soil carbon fractions in intact paddy soil profiles with multivariate techniques and variable selection
Geoderma ( IF 5.6 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.geoderma.2020.114358
Shengxiang Xu , Meiyan Wang , Xuezheng Shi

Abstract Soil organic carbon (SOC) and its labile C fractions play a central role in soil quality and C cycles. This study aimed to investigate the potential of laboratory-based hyperspectral imaging (HSI) spectroscopy to predict and map SOC and its labile C fractions (e.g., dissolved organic C, DOC; readily oxidizable organic C, ROC; and microbial biomass C, MBC) in soil profiles with a high resolution. The HSI images were captured from 16 intact paddy soil profiles to a depth of 100 ± 5 cm from four typical parent materials. The linear (i.e., partial least squares regression, PLSR) and nonlinear (i.e., artificial neural networks, ANN; cubist regression tree, Cubist; Gaussian process regression, GPR; and support vector machine regression, SVMR) multivariate techniques were compared to assess their ability to map the soil C fractions in the profiles. A spectral variable selection technique (i.e., competitive adaptive reweighted sampling, CARS) was applied to these multivariate models (i.e., CARS-PLSR, CARS-ANN, CARS-Cubist, CARS-GPR, and CARS-SVMR). Overall, the results showed that the nonlinear models performed better than the PLSR models in most cases. All optimized multivariate models with CARS achieved prediction performances similar to the full spectrum models, with high Lin's concordance correlation coefficient (LCC) and low root mean square error (RMSE). CARS-SVMR used only 37–70 spectral variables and took less time-consuming on computations (

中文翻译:

使用多元技术和变量选择对​​完整稻田土壤剖面中土壤碳组分进行高分辨率绘图的高光谱成像

摘要 土壤有机碳 (SOC) 及其不稳定碳组分在土壤质量和碳循环中起着核心作用。本研究旨在研究基于实验室的高光谱成像 (HSI) 光谱在预测和绘制 SOC 及其不稳定 C 部分(例如,溶解的有机 C、DOC;易氧化的有机 C、ROC;以及微生物生物量 C、MBC)方面的潜力在具有高分辨率的土壤剖面中。HSI 图像是从 16 个完整稻田剖面到 100±5 厘米深度的四种典型母体材料中捕获的。线性(即偏最小二乘回归,PLSR)和非线性(即人工神经网络,ANN;立体回归树,Cubist;高斯过程回归,GPR;以及支持向量机回归,SVMR) 多变量技术进行了比较,以评估它们绘制剖面中土壤碳分数的能力。将频谱变量选择技术(即竞争性自适应重新加权采样,CARS)应用于这些多变量模型(即 CARS-PLSR、CARS-ANN、CARS-Cubist、CARS-GPR 和 CARS-SVMR)。总体而言,结果表明在大多数情况下非线性模型的性能优于 PLSR 模型。所有使用 CARS 优化的多变量模型都实现了与全谱模型相似的预测性能,具有高 Lin 一致性相关系数 (LCC) 和低均方根误差 (RMSE)。CARS-SVMR 只使用了 37-70 个光谱变量,计算时间更少(CARS)应用于这些多变量模型(即,CARS-PLSR、CARS-ANN、CARS-Cubist、CARS-GPR 和 CARS-SVMR)。总体而言,结果表明在大多数情况下非线性模型的性能优于 PLSR 模型。所有使用 CARS 优化的多变量模型都实现了与全谱模型相似的预测性能,具有高 Lin 一致性相关系数 (LCC) 和低均方根误差 (RMSE)。CARS-SVMR 只使用了 37-70 个光谱变量,计算时间更少(CARS)应用于这些多变量模型(即,CARS-PLSR、CARS-ANN、CARS-Cubist、CARS-GPR 和 CARS-SVMR)。总体而言,结果表明在大多数情况下非线性模型的性能优于 PLSR 模型。所有使用 CARS 优化的多变量模型都实现了与全谱模型相似的预测性能,具有高 Lin 一致性相关系数 (LCC) 和低均方根误差 (RMSE)。CARS-SVMR 只使用了 37-70 个光谱变量,计算时间更少(s 一致性相关系数 (LCC) 和低均方根误差 (RMSE)。CARS-SVMR 只使用了 37-70 个光谱变量,计算时间更少(s 一致性相关系数 (LCC) 和低均方根误差 (RMSE)。CARS-SVMR 只使用了 37-70 个光谱变量,计算时间更少(
更新日期:2020-07-01
down
wechat
bug