当前位置: X-MOL 学术Precis. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and validation of a device for the mechanical stimulation of bioengineered 3D neo-tissue constructs
Precision Engineering ( IF 3.5 ) Pub Date : 2020-04-05 , DOI: 10.1016/j.precisioneng.2020.03.020
Jonathan T. Slocum , Peter Ascoli , Nicholas Bandiera , Benjamin Katz , Swati Kataria , Marshall Wentworth , Nelson Monteiro , Elizabeth Smith , Kenneth Weekes , Brian Johnstone , Pamela C. Yelick

A mechanical stimulation device for cell-seeded scaffolds was designed and manufactured to provide control of dynamic compressive loading on biomimetic 3D neo-tissue constructs for enhanced tissue regeneration. Despite emerging evidence implicating the importance of mechanical forces in directing cellular differentiation and dental tissue formation, the role of variable mechanical stimuli in developing dental tissue has not been fully investigated. The device described here was designed to be easily cleanable by technicians and scientists between individual tests providing repeatable displacement of gels for their experiments. Increased extracellular matrix production of temporomandibular joints (TMJ – the joints that connect the jawbone to the skull) was observed while under loading by the device and the device is capable of providing compression as low as 0.01 mm of the desired displacement. Force calibration and sterilization testing were also performed to validate the functional requirements and device performance. The preliminary results show that the resulting device can deliver up to 2 kPa of dynamic compressive pressure to bioengineer cell-based constructs, and that ethanol sterilization is sufficient to maintain a sterile environment in long term tissue culture. In this paper, we introduce a device to mechanically stimulate bioengineered tissue formation, which could be used for a variety of applications in regenerative medicine.



中文翻译:

机械刺激生物工程3D新组织构造的设备的设计和验证

设计并制造了用于细胞接种支架的机械刺激设备,以控制仿生3D新组织构建体上的动态压缩负载,以增强组织再生。尽管有新的证据暗示机械力在指导细胞分化和牙齿组织形成中的重要性,但尚未充分研究可变机械刺激在发展牙齿组织中的作用。此处描述的设备设计为易于技术人员和科学家在各个测试之间进行清洁,从而为实验提供可重复更换的凝胶。在装置加载的情况下,观察到颞下颌关节(TMJ –将颚骨连接到头骨的关节)的细胞外基质产量增加,并且该装置能够提供低至0.01 mm所需位移的压缩力。还进行了力校准和灭菌测试,以验证功能要求和设备性能。初步结果表明,所得装置可向基于生物工程细胞的构建体提供高达2 kPa的动态压缩压力,并且乙醇灭菌足以在长期组织培养中维持无菌环境。在本文中,我们介绍了一种机械刺激生物工程组织形成的装置,该装置可用于再生医学的多种应用。所需位移的01 mm。还进行了力校准和灭菌测试,以验证功能要求和设备性能。初步结果表明,所得装置可向基于生物工程细胞的构建体提供高达2 kPa的动态压缩压力,并且乙醇灭菌足以在长期组织培养中维持无菌环境。在本文中,我们介绍了一种机械刺激生物工程组织形成的装置,该装置可用于再生医学的多种应用。所需位移的01毫米。还进行了力校准和灭菌测试,以验证功能要求和设备性能。初步结果表明,所得装置可向基于生物工程细胞的构建体提供高达2 kPa的动态压缩压力,并且乙醇灭菌足以在长期组织培养中维持无菌环境。在本文中,我们介绍了一种机械刺激生物工程组织形成的装置,该装置可用于再生医学的多种应用。初步结果表明,所得装置可向基于生物工程细胞的构建体提供高达2 kPa的动态压缩压力,并且乙醇灭菌足以在长期组织培养中维持无菌环境。在本文中,我们介绍了一种机械刺激生物工程组织形成的装置,该装置可用于再生医学的多种应用。初步结果表明,所得装置可向基于生物工程细胞的构建体提供高达2 kPa的动态压缩压力,并且乙醇灭菌足以在长期组织培养中维持无菌环境。在本文中,我们介绍了一种机械刺激生物工程组织形成的装置,该装置可用于再生医学的多种应用。

更新日期:2020-04-05
down
wechat
bug