当前位置: X-MOL 学术Aquaculture › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microalgae production cost in aquaculture hatcheries
Aquaculture ( IF 3.9 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.aquaculture.2020.735310
P.C. Oostlander , J. van Houcke , R.H. Wijffels , M.J. Barbosa

Abstract Microalgae are a crucial part in many aquaculture feed applications processes, mainly in hatcheries. Many aquaculture hatcheries maintain a small scale microalgae production facility in-house for the production of live feed. Microalgae are usually grown in non-automated bubble-column systems at unknown production costs. Other reactor systems or scenarios utilizing artificial light or sunlight and at different scales could result in a more cost efficient production processes. To determine the cost-price and cost-distribution of microalgae production facilities in Dutch aquaculture industry and identify the most efficient cost reducing strategies a techno-economic analysis for small scale microalgae production facilities (25-1500 m2) was developed. Commercially available reactors commonly used in aquaculture were compared; tubular photobioreactors (TPBR) and bubble-columns (BC) in two placement possibilities; using artificial light in an indoor facility (AL) and utilizing sunlight in a greenhouse (GH) under Dutch climate conditions. Data from commercial microalgae facilities in the Netherlands are used to model reference scenarios describing the cost price of microalgae production with state of the art technology in aquaculture for a biomass production capacity of 125 kg year−1. The reference cost price for algae biomass (on the basis of dry matter) is calculated at €290,- kg−1 and € 329 kg−1 for tubular reactors under artificial light and a greenhouse, respectively and €587,- kg−1 and €573 kg−1 for bubble-columns under artificial light and a greenhouse, respectively. The addition of more artificial light will significantly reduce production costs (by 33%) in all small-scale systems modelled. Biomass yield on light (Yx,ph) showed the largest effect on cost price when not considering a different scale of the production process. Process parameters like temperature control should be aimed at optimizing Yx,ph rather than other forms of cost reduction. The scale of a microalgae production facility has a very large impact on the cost price. With state of the art technologies a cost price reduction of 92% could be achieved by changing the scale from 25m2 to 1500m2, resulting in a cost price of €43,- kg−1, producing 3992 kg year−1 for tubular reactors in a greenhouse. The presented techno-economic model gives valuable insights in the cost price distribution of microalgae production in aquaculture. This allows to focus research efforts towards the most promising cost reduction methods and to optimize existing production facilities in aquaculture companies to achieve economically sustainable microalgae production for live feed in hatcheries.

中文翻译:

水产养殖孵化场微藻生产成本

摘要 微藻是许多水产养殖饲料应用过程中的关键部分,主要是在孵化场。许多水产养殖孵化场在内部设有小型微藻生产设施,用于生产活饲料。微藻通常以未知的生产成本在非自动化气泡柱系统中生长。其他利用人造光或太阳光并以不同规模使用的反应堆系统或场景可能会产生更具成本效益的生产过程。为了确定荷兰水产养殖业微藻生产设施的成本价格和成本分布,并确定最有效的降低成本策略,开发了小型微藻生产设施(25-1500 平方米)的技术经济分析。比较了水产养殖中常用的市售反应器;管式光生物反应器 (TPBR) 和气泡柱 (BC) 两种放置方式;在荷兰气候条件下,在室内设施 (AL) 中使用人造光并在温室 (GH) 中使用阳光。来自荷兰商业微藻设施的数据用于模拟参考情景,该情景描述了采用最先进的水产养殖技术进行微藻生产的成本价格,生物质生产能力为 125 kg-1。藻类生物质的参考成本价格(基于干物质)计算为人造光和温室下的管式反应器分别为 €290,- kg−1 和 € 329 kg−1 和 €587,- kg−1人造光和温室下的气泡柱分别为 573 kg−1。在所有建模的小规模系统中,添加更多人造光将显着降低生产成本(降低 33%)。当不考虑不同规模的生产过程时,光生物质产量 (Yx,ph) 对成本价格的影响最大。温度控制等工艺参数应旨在优化 Yx,ph,而不是其他形式的成本降低。微藻生产设施的规模对成本价格有非常大的影响。使用最先进的技术,通过将规模从 25 平方米更改为 1500 平方米,成本价格可以降低 92%,成本价格为 €43,- kg−1,在一个管式反应器中生产 3992 kg year−1温室。所提出的技术经济模型为水产养殖中微藻生产的成本价格分布提供了宝贵的见解。
更新日期:2020-08-01
down
wechat
bug