当前位置: X-MOL 学术arXiv.cs.SY › 论文详情
Safe Zero-Shot Model-Based Learning and Control: A Wasserstein Distributionally Robust Approach
arXiv - CS - Systems and Control Pub Date : 2020-04-02 , DOI: arxiv-2004.00759
Aaron Kandel; Scott J. Moura

This paper explores distributionally robust zero-shot model-based learning and control using Wasserstein ambiguity sets. Conventional model-based reinforcement learning algorithms struggle to guarantee feasibility throughout the online learning process. We address this open challenge with the following approach. Using a stochastic model-predictive control (MPC) strategy, we augment safety constraints with affine random variables corresponding to the instantaneous empirical distributions of modeling error. We obtain these distributions by evaluating model residuals in real time throughout the online learning process. By optimizing over the worst case modeling error distribution defined within a Wasserstein ambiguity set centered about our empirical distributions, we can approach the nominal constraint boundary in a provably safe way. We validate the performance of our approach using a case study of lithium-ion battery fast charging, a relevant and safety-critical energy systems control application. Our results demonstrate marked improvements in safety compared to a basic learning model-predictive controller, with constraints satisfied at every instance during online learning and control.
更新日期:2020-04-03

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug