当前位置: X-MOL 学术arXiv.cs.RO › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Learned and Controlled Autonomous Robotic Exploration in an Extreme, Unknown Environment
arXiv - CS - Robotics Pub Date : 2020-04-02 , DOI: arxiv-2004.00749
Frances Zhu, D. Sawyer Elliott, ZhiDi Yang, Haoyuan Zheng

Exploring and traversing extreme terrain with surface robots is difficult, but highly desirable for many applications, including exploration of planetary surfaces, search and rescue, among others. For these applications, to ensure the robot can predictably locomote, the interaction between the terrain and vehicle, terramechanics, must be incorporated into the model of the robot's locomotion. Modeling terramechanic effects is difficult and may be impossible in situations where the terrain is not known a priori. For these reasons, learning a terramechanics model online is desirable to increase the predictability of the robot's motion. A problem with previous implementations of learning algorithms is that the terramechanics model and corresponding generated control policies are not easily interpretable or extensible. If the models were of interpretable form, designers could use the learned models to inform vehicle and/or control design changes to refine the robot architecture for future applications. This paper explores a new method for learning a terramechanics model and a control policy using a model-based genetic algorithm. The proposed method yields an interpretable model, which can be analyzed using preexisting analysis methods. The paper provides simulation results that show for a practical application, the genetic algorithm performance is approximately equal to the performance of a state-of-the-art neural network approach, which does not provide an easily interpretable model.

中文翻译:

在极端未知环境中学习和控制自主机器人探索

使用地面机器人探索和穿越极端地形很困难,但对于许多应用来说非常理想,包括行星表面探索、搜索和救援等。对于这些应用,为了确保机器人能够可预测地运动,必须将地形和车辆之间的相互作用、地形力学纳入机器人的运动模型中。对地形力学效应进行建模是困难的,并且在地形未知的情况下可能是不可能的。由于这些原因,在线学习地形力学模型对于提高机器人运动的可预测性是可取的。以前的学习算法实现的一个问题是地形力学模型和相应的生成控制策略不容易解释或扩展。如果模型具有可解释的形式,设计人员可以使用学习模型来通知车辆和/或控制设计更改,以改进机器人架构以供未来应用。本文探索了一种使用基于模型的遗传算法学习地形力学模型和控制策略的新方法。所提出的方法产生了一个可解释的模型,可以使用预先存在的分析方法进行分析。该论文提供的仿真结果表明,对于实际应用,遗传算法的性能大约等于最先进的神经网络方法的性能,但不能提供易于解释的模型。本文探索了一种使用基于模型的遗传算法学习地形力学模型和控制策略的新方法。所提出的方法产生了一个可解释的模型,可以使用预先存在的分析方法进行分析。该论文提供的仿真结果表明,对于实际应用,遗传算法的性能大约等于最先进的神经网络方法的性能,但不能提供易于解释的模型。本文探索了一种使用基于模型的遗传算法学习地形力学模型和控制策略的新方法。所提出的方法产生了一个可解释的模型,可以使用预先存在的分析方法进行分析。该论文提供的仿真结果表明,对于实际应用,遗传算法的性能大约等于最先进的神经网络方法的性能,但不能提供易于解释的模型。
更新日期:2020-04-03
down
wechat
bug