当前位置: X-MOL 学术Wind Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of inflow turbulence intensity and turbine arrangements on the power generation efficiency of large wind farms
Wind Energy ( IF 4.0 ) Pub Date : 2020-04-03 , DOI: 10.1002/we.2507
Yu‐Ting Wu, Chuan‐Yao Lin, Tsang‐Jung Chang

In this study, we conduct a series of large‐eddy simulations (LESs) to study the impact of different incoming turbulent boundary layer flows over large wind farms, with a particular focus on the overall efficiency of electricity production and the evolution of the turbine wake structure. Five representative turbine placements in the large wind farm are considered, including an aligned layout and four staggered layouts with lateral or vertical offset arrangements. Four incoming flow conditions are used and arranged from the LESs of the ABL flow over homogeneous flat surfaces with four different aerodynamic roughness lengths (i.e., z0 = 0.5, 0.1, 0.01, and 0.0001 m), where the hub‐height turbulence intensity levels are about 11.1%, 8.9%, 6.8%, and 4.9%, respectively. The simulation results indicate that an enhancement in the inflow turbulence level can effectively increase the power generation efficiency in the large wind farms, with about 23.3% increment on the overall farm power production and up to about 32.0% increment on the downstream turbine power production. Under the same inflow condition, the change of the turbine‐array layouts can increase power outputs within the first 10 turbine rows, which has a maximum increment of about 26.5% under the inflow condition with low turbulence. By comparison, the increase of the inflow turbulence intensity facilitates faster wake recovery that raises the power generation efficiency of large wind farms than the adjustment of the turbine placing layouts.

中文翻译:

入流湍流强度和涡轮机布置对大型风电场发电效率的影响

在这项研究中,我们进行了一系列大涡模拟(LESs),以研究不同的进入的湍流边界层流对大型风电场的影响,特别关注发电的整体效率和涡轮尾流的演变。结构体。在大型风电场中考虑了五个代表性的涡轮机布置,包括对齐的布置和四个具有横向或垂直偏移布置的交错布置。在具有四个不同空气动力学粗糙度长度(即z0 = 0.5、0.1、0.01和0.0001 m)的均质平坦表面上,使用了四个输入流动条件并从ABL流的LES安排,其中轮毂高度湍流强度水平为分别约为11.1%,8.9%,6.8%和4.9%。仿真结果表明,流入湍流水平的提高可以有效地提高大型风电场的发电效率,总风电场发电量增加约23.3%,下游涡轮发电量增加约32.0%。在相同的流入条件下,涡轮机阵列布局的变化可以增加前10个涡轮机排内的功率输出,在低湍流的流入条件下,其最大增量约为26.5%。相比之下,流入湍流强度的增加促进了更快的尾流恢复,与调整涡轮机布置布局相比,其唤醒了大型风电场的发电效率。农场总发电量增加3%,下游涡轮机发电量增加约32.0%。在相同的流入条件下,涡轮机阵列布局的变化可以增加前10个涡轮机排内的功率输出,在低湍流的流入条件下,其最大增量约为26.5%。相比之下,流入湍流强度的增加促进了更快的尾流恢复,与调整涡轮机布置布局相比,其唤醒了大型风电场的发电效率。农场总发电量增加3%,下游涡轮机发电量增加约32.0%。在相同的流入条件下,涡轮机阵列布局的变化可以增加前10个涡轮机排内的功率输出,在低湍流的流入条件下,其最大增量约为26.5%。相比之下,流入湍流强度的增加促进了更快的尾流恢复,与调整涡轮机布置布局相比,其唤醒了大型风电场的发电效率。在低湍流情况下为5%。相比之下,流入湍流强度的增加促进了更快的尾流恢复,与调整涡轮机布置布局相比,其唤醒了大型风电场的发电效率。在低湍流情况下为5%。相比之下,入流湍流强度的增加促进了更快的尾流恢复,与调整涡轮机布置布局相比,尾流恢复提高了大型风电场的发电效率。
更新日期:2020-04-03
down
wechat
bug