当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dielectric Polarization in Inverse Spinel-Structured Mg2 TiO4 Coating to Suppress Oxygen Evolution of Li-Rich Cathode Materials.
Advanced Materials ( IF 27.4 ) Pub Date : 2020-04-02 , DOI: 10.1002/adma.202000496
Wei Zhang 1 , Yonggang Sun 2 , Huiqiu Deng 3 , Jianming Ma 3 , Yi Zeng 1 , Zhiqiang Zhu 1 , Zhisheng Lv 1 , Huarong Xia 1 , Xiang Ge 1 , Shengkai Cao 1 , Yao Xiao 1 , Shibo Xi 4 , Yonghua Du 5 , Anmin Cao 2 , Xiaodong Chen 1, 6
Affiliation  

High-energy Li-rich layered cathode materials (≈900 Wh kg-1 ) suffer from severe capacity and voltage decay during cycling, which is associated with layered-to-spinel phase transition and oxygen redox reaction. Current efforts mainly focus on surface modification to suppress this unwanted structural transformation. However, the true challenge probably originates from the continuous oxygen release upon charging. Here, the usage of dielectric polarization in surface coating to suppress the oxygen evolution of Li-rich material is reported, using Mg2 TiO4 as a proof-of-concept material. The creation of a reverse electric field in surface layers effectively restrains the outward migration of bulk oxygen anions. Meanwhile, high oxygen-affinity elements of Mg and Ti well stabilize the surface oxygen of Li-rich material via enhancing the energy barrier for oxygen release reaction, verified by density functional theory simulation. Benefited from these, the modified Li-rich electrode exhibits an impressive cyclability with a high capacity retention of ≈81% even after 700 cycles at 2 C (≈0.5 A g-1 ), far superior to ≈44% of the unmodified counterpart. In addition, Mg2 TiO4 coating greatly mitigates the voltage decay of Li-rich material with the degradation rate reduced by ≈65%. This work proposes new insights into manipulating surface chemistry of electrode materials to control oxygen activity for high-energy-density rechargeable batteries.

中文翻译:

反向尖晶石结构的Mg2 TiO4涂层中的介电极化,可抑制富锂阴极材料的氧气逸出。

高能量的富含锂的分层阴极材料(≈900Wh kg-1)在循环过程中会遭受严重的容量和电压衰减,这与分层到尖晶石的相变和氧氧化还原反应有关。当前的努力主要集中于表面改性以抑制这种不希望的结构转变。但是,真正的挑战可能源自充电时氧气的连续释放。在此,报道了使用Mg 2 TiO 4作为概念验证材料,在表面涂层中使用介电极化来抑制富Li材料的氧逸出。在表面层中产生反向电场可有效抑制大量氧阴离子的向外迁移。与此同时,密度泛函理论模拟证明,Mg和Ti的高氧亲和性元素可通过增强氧释放反应的能垒来稳定富锂材料的表面氧。得益于这些,改进的富锂电极即使在2 C(≈0.5A g-1)下进行700次循环后,仍具有令人印象深刻的可循环性和≈81%的高容量保持率,远优于未改性的类似物的≈44%。此外,Mg2 TiO4涂层极大地减轻了富锂材料的电压衰减,降解率降低了约65%。这项工作为操纵电极材料的表面化学以控制高能量密度可充电电池的氧活度提出了新的见解。改进的富锂电极在2 C(≈0.5A g-1)下经过700次循环后,仍具有令人印象深刻的可循环性和≈81%的高容量保持率,远胜于未经修饰的同类产品的≈44%。此外,Mg2 TiO4涂层极大地减轻了富锂材料的电压衰减,降解率降低了约65%。这项工作为操纵电极材料的表面化学以控制高能量密度可充电电池的氧活度提出了新的见解。改进的富锂电极在2 C(≈0.5A g-1)下经过700次循环后,仍表现出令人印象深刻的可循环性,具有约81%的高容量保持率,远优于未经修饰的同类产品的约44%。此外,Mg2 TiO4涂层极大地减轻了富锂材料的电压衰减,降解率降低了约65%。这项工作为操纵电极材料的表面化学以控制高能量密度可充电电池的氧气活度提出了新的见解。
更新日期:2020-04-02
down
wechat
bug