当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large-area cavity-enhanced 3D chiral metamaterials based on the angle-dependent deposition technique.
Nanoscale ( IF 6.7 ) Pub Date : 2020-04-30 , DOI: 10.1039/d0nr01928c
Chaodong Tang 1 , Feiliang Chen , Jinglei Du , Yidong Hou
Affiliation  

Large-area and high-performance chiral metamaterials are highly desired for practical applications, such as controlling the polarization state of an electromagnetic wave and enhancing the sensor sensitivity of chiral molecules. In this work, cavity-enhanced chiral metamaterials (CECMs) with a large area (1 cm2) have been fabricated by the convenient angle-dependent material deposition technique. The optimal chiral signal (g factor) resonance in the visible waveband can reach about 0.94 with a figure of merit (FOM) of about 5.2, which is about ten times larger than that of chiral metamaterials (CMs) without a cavity (i.e., a g factor of 0.094 with the FOM of about 1.12). Both the theoretical and experimental results demonstrate that the circular conversion components from the anisotropic geometry of CMs play a crucial role in the final chiroptical effect of CECM, which together with the cavity effect enhance both the chiroptical resonance intensity and FOM. Choosing the appropriate deposition parameters can effectively modify the geometric anisotropy of CM and thus the chiroptical effect of CECM. The geometric nanoscale morphology, electromagnetic properties and sensor performance were investigated carefully in this work. The fabricated CECM working in the visible waveband together with the cavity-enhanced scheme provides a competitive candidate for enhancing the performance and the practical applications of CMs.

中文翻译:

基于角度相关沉积技术的大面积腔增强3D手性超材料。

大面积和高性能的手性超材料对于实际应用是非常需要的,例如控制电磁波的极化状态和增强手性分子的传感器灵敏度。在这项工作中,已经通过方便的角度依赖性材料沉积技术制造了具有大面积(1 cm2)的腔增强手性超材料(CECM)。可见波段的最佳手性信号(g因子)共振可以达到约0.94,品质因数(FOM)约为5.2,这比没有空腔的手性超材料(CM)的约十倍大系数为0.094,FOM约为1.12)。理论和实验结果均表明,CMs的各向异性几何结构的圆形转换成分在CECM的最终手性效应中起着至关重要的作用,其与空穴效应一起增强了手性共振强度和FOM。选择合适的沉积参数可以有效地改变CM的几何各向异性,从而改变CECM的按摩效应。在这项工作中,对几何纳米级形态,电磁特性和传感器性能进行了仔细研究。在可见波段工作的预制CECM与腔增强方案一起为提高CM的性能和实际应用提供了竞争性的候选方案。它与空腔效应一起增强了脊骨共振强度和FOM。选择合适的沉积参数可以有效地改变CM的几何各向异性,从而改变CECM的按摩效应。在这项工作中,对几何纳米级形态,电磁特性和传感器性能进行了仔细研究。在可见波段工作的预制CECM与腔增强方案一起为提高CM的性能和实际应用提供了竞争性的候选方案。它与空腔效应一起增强了脊骨共振强度和FOM。选择合适的沉积参数可以有效地改变CM的几何各向异性,从而改变CECM的按摩效应。在这项工作中,对几何纳米尺度的形貌,电磁特性和传感器性能进行了仔细研究。在可见波段工作的预制CECM与腔增强方案一起为提高CM的性能和实际应用提供了一个有竞争力的候选人。
更新日期:2020-04-03
down
wechat
bug