当前位置: X-MOL 学术Natl. Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion
National Science Review ( IF 16.3 ) Pub Date : 2020-04-02 , DOI: 10.1093/nsr/nwaa057
Yuanyuan Zhao 1 , Jin Wang 2 , Xiang-Yu Kong 1 , Weiwen Xin 1 , Teng Zhou 3 , Yongchao Qian 4 , Linsen Yang 1 , Jinhui Pang 2 , Lei Jiang 1 , Liping Wen 1
Affiliation  

The membrane-based reverse electrodialysis (RED) technique has a fundamental role in harvesting clean and sustainable osmotic energy existing in the salinity gradient. However, the current designs of membranes cannot cope with the high output power density and robustness. Here, we construct a sulfonated poly (ether ether ketone) (SPEEK) nanochannel membrane with numerous nanochannels for a membrane-based osmotic power generator. The parallel nanochannels with high space charges show excellent cation-selectivity, which could further be improved by adjusting the length and charge density of nanochannels. Based on numerical simulation, the system with space charge shows better conductivity and selectivity than those of a surface-charged nanochannel. The output power density of our proposed membrane-based device reaches up to 5.8 W/m2 by mixing artificial seawater and river water. Additionally, the SPEEK membranes exhibit good mechanical properties, endowing the possibility of creating a high-endurance scale-up membrane-based generator system. We believe that this work provides useful insights into material design and fluid transport for the power generator in osmotic energy conversion.

中文翻译:


用于高性能渗透能转换的稳健磺化聚(醚醚酮)纳米通道



基于膜的反电渗析(RED)技术在收集盐度梯度中存在的清洁且可持续的渗透能方面发挥着重要作用。然而,当前的膜设计无法应对高输出功率密度和鲁棒性。在这里,我们构建了一种具有大量纳米通道的磺化聚醚醚酮(SPEEK)纳米通道膜,用于基于膜的渗透发电器。具有高空间电荷的平行纳米通道表现出优异的阳离子选择性,可以通过调整纳米通道的长度和电荷密度进一步提高阳离子选择性。基于数值模拟,具有空间电荷的系统表现出比表面带电纳米通道更好的导电性和选择性。通过混合人工海水和河水,我们提出的膜基装置的输出功率密度高达 5.8 W/m 2 。此外,SPEEK 膜具有良好的机械性能,使得创建高耐用性的放大膜发电机系统成为可能。我们相信这项工作为渗透能量转换中发电机的材料设计和流体传输提供了有用的见解。
更新日期:2020-04-02
down
wechat
bug