当前位置: X-MOL 学术IEEE Microw. Mag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reconfigurable Radios Employing Ferroelectrics: Recent Progress on Reconfigurable RF Acoustic Devices Based on Thin-Film Ferroelectric Barium Strontium Titanate
IEEE Microwave Magazine ( IF 3.7 ) Pub Date : 2020-05-01 , DOI: 10.1109/mmm.2020.2971376
Milad Zolfagharloo Koohi , Amir Mortazawi

Wireless communication has become an integral part of our lives, continuously improving the quality of our everyday activities. A multitude of functionalities are offered by recent generations of mobile phones, resulting in a significant adoption of wireless devices and a growth in data traffic, as reported by Ericsson [1] in Figure 1. To accommodate consumers' continuous demands for high data rates, the number of frequency bands allocated for communication by governments across the world has also steadily increased. Furthermore, new technologies, such as carrier aggregation and multiple-input/multiple-output have been developed. Today's mobile devices are capable of supporting numerous wireless technologies (i.e., Wi-Fi, Bluetooth, GPS, 3G, 4G, and others), each having its own designated frequency bands of operation. Bandpass filters, multiplexers, and switchplexers in RF transceivers are essential for the coexistence of different wireless technologies and play a vital role in efficient spectrum usage. Current mobile devices contain many bandpass filters and switches to select the frequency band of interest, based on the desired mode of operation, as shown in Figure 2. This figure presents a schematic of a generic RF front end for a typical mobile device, where a separate module is allocated for the filters. Each generation of mobile devices demands a larger number of RF filters and switches, and, with the transition toward 5G and its corresponding frequency bands, the larger number of required filters will only add to the challenges associated with cell-phone RF front-end design.

中文翻译:

采用铁电体的可重构无线电:基于薄膜铁电钛酸锶钡可重构射频声学器件的最新进展

无线通信已成为我们生活中不可或缺的一部分,不断提高我们日常活动的质量。最近几代手机提供了多种功能,导致无线设备的大量采用和数据流量的增长,如图 1 中爱立信 [1] 所报告的那样。 为了满足消费者对高数据速率的持续需求,世界各国政府分配给通信的频段数量也在稳步增加。此外,还开发了诸如载波聚合和多输入/多输出等新技术。当今的移动设备能够支持多种无线技术(即 Wi-Fi、蓝牙、GPS、3G、4G 等),每种技术都有自己指定的工作频段。带通滤波器,RF 收发器中的多路复用器和开关多路复用器对于不同无线技术的共存至关重要,并且在有效频谱使用方面发挥着至关重要的作用。当前的移动设备包含许多带通滤波器和开关,以根据所需的操作模式选择感兴趣的频段,如图 2 所示。该图显示了典型移动设备的通用 RF 前端的示意图,其中为过滤器分配了单独的模块。每一代移动设备都需要更多数量的射频滤波器和开关,随着向 5G 及其相应频段的过渡,所需滤波器数量的增加只会增加与手机射频前端设计相关的挑战. RF 收发器中的开关复用器对于不同无线技术的共存至关重要,并在有效频谱使用方面发挥着至关重要的作用。当前的移动设备包含许多带通滤波器和开关,以根据所需的操作模式选择感兴趣的频段,如图 2 所示。该图显示了典型移动设备的通用 RF 前端的示意图,其中为过滤器分配了单独的模块。每一代移动设备都需要更多数量的射频滤波器和开关,随着向 5G 及其相应频段的过渡,所需滤波器数量的增加只会增加与手机射频前端设计相关的挑战. RF 收发器中的开关复用器对于不同无线技术的共存至关重要,并在有效频谱使用方面发挥着至关重要的作用。当前的移动设备包含许多带通滤波器和开关,以根据所需的操作模式选择感兴趣的频段,如图 2 所示。该图显示了典型移动设备的通用 RF 前端的示意图,其中为过滤器分配了单独的模块。每一代移动设备都需要更多数量的射频滤波器和开关,随着向 5G 及其相应频段的过渡,所需滤波器数量的增加只会增加与手机射频前端设计相关的挑战. 当前的移动设备包含许多带通滤波器和开关,以根据所需的操作模式选择感兴趣的频段,如图 2 所示。该图显示了典型移动设备的通用 RF 前端的示意图,其中为过滤器分配了单独的模块。每一代移动设备都需要更多数量的射频滤波器和开关,随着向 5G 及其相应频段的过渡,所需滤波器数量的增加只会增加与手机射频前端设计相关的挑战. 当前的移动设备包含许多带通滤波器和开关,以根据所需的操作模式选择感兴趣的频段,如图 2 所示。该图显示了典型移动设备的通用 RF 前端的示意图,其中为过滤器分配了单独的模块。每一代移动设备都需要更多数量的射频滤波器和开关,随着向 5G 及其相应频段的过渡,所需滤波器数量的增加只会增加与手机射频前端设计相关的挑战.
更新日期:2020-05-01
down
wechat
bug