当前位置: X-MOL 学术IEEE Access › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kinematic Design of a 2R1T Robotic End-effector with Flexure Joints
IEEE Access ( IF 3.4 ) Pub Date : 2020-01-01 , DOI: 10.1109/access.2020.2982185
Guilin Yang , Renfeng Zhu , Zaojun Fang , Chin-Yin Chen , Chi Zhang

This paper focuses on the kinematic design issues for a three degrees-of-freedom (DOFs), i.e., two-rotational and one-translational (2R1T) end-effector to perform continuous contact operations, such as deburring, grinding, and polishing. The proposed end-effector design employs a 3-legged prismatic-prismatic-spherical (3-PPS) parallel mechanism due to its desired kinematic characteristics and dynamic behavior. As the 3-PPS parallel mechanism is featured with zero-torsion motion characteristic, the orientation of its moving platform can be always represented by a rotation about an axis parallel to its base platform plane. Through analysis of the rotation matrix of the moving platform, closed-form linear solutions for both forward and inverse displacement analyses are readily derived. Other critical design issues, such as passive prismatic joint displacement, parasitic motion, velocity, and singularity analyses, are addressed. For a specific dimension design of the 3-PPS parallel mechanism, the workspace analysis indicates that the proposed design can achieve a singularity-free $\pm 12 ^\circ \times \pm 12^\circ \times 25$ mm workspace. Furthermore, as the displacements of the passive prismatic joints are within 2.63mm, light-weight flexure-based prismatic joints are designed to replace the conventional heavy linear guides. The flexure-rigid structure of the 3-DOF 2R1T end-effector significantly improves the dynamic performance of the system. A prototype of the 3-DOF 2R1T robotic end-effector is designed and fabricated to verify the proposed design.

中文翻译:

带有挠性关节的 2R1T 机器人末端执行器的运动学设计

本文重点讨论三自由度 (DOF) 的运动学设计问题,即两个旋转和一个平移 (2R1T) 末端执行器执行连续接触操作,例如去毛刺、研磨和抛光。由于其所需的运动学特性和动态行为,拟议的末端执行器设计采用 3 腿棱柱-棱柱-球 (3-PPS) 并联机构。由于3-PPS并联机构具有零扭运动特性,其运动平台的方向总是可以用绕平行于其基础平台平面的轴的旋转来表示。通过分析移动平台的旋转矩阵,可以很容易地推导出正向和反向位移分析的封闭形式线性解。其他关键设计问题,例如被动棱柱关节位移、寄生运动、速度和奇异性分析,都得到了解决。对于 3-PPS 并联机构的特定尺寸设计,工作空间分析表明,所提出的设计可以实现无奇点 $\pm 12 ^\circ \times \pm 12^\circ \times 25$ mm 工作空间。此外,由于被动棱柱关节的位移在2.63mm以内,因此设计了轻量化的基于挠性的棱柱关节,以取代传统的重型直线导轨。3-DOF 2R1T 末端执行器的挠性刚性结构显着提高了系统的动态性能。设计并制造了 3-DOF 2R1T 机器人末端执行器的原型,以验证所提出的设计。对于 3-PPS 并联机构的特定尺寸设计,工作空间分析表明,所提出的设计可以实现无奇点 $\pm 12 ^\circ \times \pm 12^\circ \times 25$ mm 工作空间。此外,由于被动棱柱关节的位移在2.63mm以内,因此设计了轻量化的基于挠性的棱柱关节,以取代传统的重型直线导轨。3-DOF 2R1T 末端执行器的挠性刚性结构显着提高了系统的动态性能。设计并制造了 3-DOF 2R1T 机器人末端执行器的原型,以验证所提出的设计。对于 3-PPS 并联机构的特定尺寸设计,工作空间分析表明,所提出的设计可以实现无奇点 $\pm 12 ^\circ \times \pm 12^\circ \times 25$ mm 工作空间。此外,由于被动棱柱关节的位移在2.63mm以内,因此设计了轻量化的基于挠性的棱柱关节,以取代传统的重型直线导轨。3-DOF 2R1T 末端执行器的挠性刚性结构显着提高了系统的动态性能。设计并制造了 3-DOF 2R1T 机器人末端执行器的原型,以验证所提出的设计。由于被动棱柱关节的位移在2.63mm以内,因此设计了轻量级的基于挠性的棱柱关节,以取代传统的重型直线导轨。3-DOF 2R1T 末端执行器的挠性刚性结构显着提高了系统的动态性能。设计并制造了 3-DOF 2R1T 机器人末端执行器的原型,以验证所提出的设计。由于被动棱柱关节的位移在2.63mm以内,因此设计了轻量级的基于挠性的棱柱关节,以取代传统的重型直线导轨。3-DOF 2R1T 末端执行器的挠性刚性结构显着提高了系统的动态性能。设计并制造了 3-DOF 2R1T 机器人末端执行器的原型,以验证所提出的设计。
更新日期:2020-01-01
down
wechat
bug