当前位置: X-MOL 学术Front. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Aspergillus niger Spores Are Highly Resistant to Space Radiation.
Frontiers in Microbiology ( IF 4.0 ) Pub Date : 2020-04-03 , DOI: 10.3389/fmicb.2020.00560
Marta Cortesão 1 , Aram de Haas 1 , Rebecca Unterbusch 1 , Akira Fujimori 2 , Tabea Schütze 3 , Vera Meyer 3 , Ralf Moeller 1
Affiliation  

The filamentous fungus Aspergillus niger is one of the main contaminants of the International Space Station (ISS). It forms highly pigmented, airborne spores that have thick cell walls and low metabolic activity, enabling them to withstand harsh conditions and colonize spacecraft surfaces. Whether A. niger spores are resistant to space radiation, and to what extent, is not yet known. In this study, spore suspensions of a wild-type and three mutant strains (with defects in pigmentation, DNA repair, and polar growth control) were exposed to X-rays, cosmic radiation (helium- and iron-ions) and UV-C (254 nm). To assess the level of resistance and survival limits of fungal spores in a long-term interplanetary mission scenario, we tested radiation doses up to 1000 Gy and 4000 J/m2. For comparison, a 360-day round-trip to Mars yields a dose of 0.66 ± 0.12 Gy. Overall, wild-type spores of A. niger were able to withstand high doses of X-ray (LD90 = 360 Gy) and cosmic radiation (helium-ion LD90 = 500 Gy; and iron-ion LD90 = 100 Gy). Drying the spores before irradiation made them more susceptible toward X-ray radiation. Notably, A. niger spores are highly resistant to UV-C radiation (LD90 = 1038 J/m2), which is significantly higher than that of other radiation-resistant microorganisms (e.g., Deinococcus radiodurans). In all strains, UV-C treated spores (1000 J/m2) were shown to have decreased biofilm formation (81% reduction in wild-type spores). This study suggests that A. niger spores might not be easily inactivated by exposure to space radiation alone and that current planetary protection guidelines should be revisited, considering the high resistance of fungal spores.

中文翻译:

黑曲霉孢子高度抗空间辐射。

黑曲霉丝状真菌是国际空间站(ISS)的主要污染物之一。它形成色素沉着的,空气传播的孢子,这些孢子具有厚的细胞壁和低的代谢活性,使其能够经受恶劣的条件并在航天器表面定居。黑曲霉孢子是否对空间辐射有抵抗力以及在多大程度上尚不知道。在这项研究中,将野生型和三种突变菌株(在色素沉着,DNA修复和极性生长控制方面存在缺陷)的孢子悬浮液暴露于X射线,宇宙辐射(氦和铁离子)和UV-C (254纳米)。为了评估长期星际任务场景中真菌孢子的抗性水平和生存极限,我们测试了高达1000 Gy和4000 J / m2的辐射剂量。为了进行比较,前往火星的360天往返行程的剂量为0.66±0。12 Gy。总体而言,黑曲霉的野生型孢子能够承受高剂量的X射线(LD90 = 360 Gy)和宇宙射线(氦离子LD90 = 500 Gy;铁离子LD90 = 100 Gy)。辐射前将孢子干燥会使它们更容易受到X射线辐射的影响。值得注意的是,黑曲霉孢子对UV-C辐射具有高度抗性(LD90 = 1038 J / m2),远高于其他抗辐射微生物(例如,Deinococcus radiodurans)。在所有菌株中,经UV-C处理的孢子(1000 J / m2)被证明具有减少的生物膜形成(野生型孢子减少81%)。这项研究表明,黑曲霉孢子可能不容易通过单独暴露于空间辐射而失活,考虑到真菌孢子的高抗性,应重新审视当前的行星保护准则。黑曲霉的野生型孢子能够承受高剂量的X射线(LD90 = 360 Gy)和宇宙辐射(氦离子LD90 = 500 Gy;铁离子LD90 = 100 Gy)。辐射前将孢子干燥会使它们更容易受到X射线辐射的影响。值得注意的是,黑曲霉孢子对UV-C辐射具有高度抗性(LD90 = 1038 J / m2),远高于其他抗辐射微生物(例如,Deinococcus radiodurans)。在所有菌株中,经UV-C处理的孢子(1000 J / m2)被证明具有减少的生物膜形成(野生型孢子减少81%)。这项研究表明,黑曲霉孢子可能不容易通过单独暴露于空间辐射而失活,考虑到真菌孢子的高抗性,应重新审视当前的行星保护准则。黑曲霉的野生型孢子能够承受高剂量的X射线(LD90 = 360 Gy)和宇宙辐射(氦离子LD90 = 500 Gy;铁离子LD90 = 100 Gy)。辐射前将孢子干燥会使它们更容易受到X射线辐射的影响。值得注意的是,黑曲霉孢子对UV-C辐射具有高度抗性(LD90 = 1038 J / m2),远高于其他抗辐射微生物(例如,Deinococcus radiodurans)。在所有菌株中,经UV-C处理的孢子(1000 J / m2)被证明具有减少的生物膜形成(野生型孢子减少81%)。这项研究表明,黑曲霉孢子可能不容易通过单独暴露于空间辐射而失活,考虑到真菌孢子的高抗性,应重新审视当前的行星保护准则。尼日尔能够承受高剂量的X射线(LD90 = 360 Gy)和宇宙辐射(氦离子LD90 = 500 Gy;铁离子LD90 = 100 Gy)。辐射前将孢子干燥会使它们更容易受到X射线辐射的影响。值得注意的是,黑曲霉孢子对UV-C辐射具有高度抗性(LD90 = 1038 J / m2),远高于其他抗辐射微生物(例如,Deinococcus radiodurans)。在所有菌株中,经UV-C处理的孢子(1000 J / m2)已显示出生物膜形成减少(野生型孢子减少81%)。这项研究表明,黑曲霉孢子可能不容易通过单独暴露于空间辐射而失活,考虑到真菌孢子的高抗性,应重新审视当前的行星保护准则。尼日尔能够承受高剂量的X射线(LD90 = 360 Gy)和宇宙辐射(氦离子LD90 = 500 Gy;铁离子LD90 = 100 Gy)。辐射前将孢子干燥会使它们更容易受到X射线辐射的影响。值得注意的是,黑曲霉孢子对UV-C辐射具有高度抗性(LD90 = 1038 J / m2),远高于其他抗辐射微生物(例如,Deinococcus radiodurans)。在所有菌株中,经UV-C处理的孢子(1000 J / m2)被证明具有减少的生物膜形成(野生型孢子减少81%)。这项研究表明,黑曲霉孢子可能不容易通过单独暴露于空间辐射而失活,考虑到真菌孢子的高抗性,应重新审视当前的行星保护准则。
更新日期:2020-04-06
down
wechat
bug