当前位置: X-MOL 学术Chemosphere › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasma-catalytic degradation of ciprofloxacin in aqueous solution over different MnO2 nanocrystals in a dielectric barrier discharge system.
Chemosphere ( IF 8.1 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.chemosphere.2020.126595
Jian Cheng 1 , Doudou Wang 1 , Baohua Wang 1 , Han Ning 1 , Ying Zhang 2 , Yuchao Li 3 , Jiutao An 1 , Peiling Gao 1
Affiliation  

The α-MnO2, β-MnO2 and γ-MnO2 samples were prepared by the hydrothermal method and were used for the degradation of ciprofloxacin (CIP) wastewater in a combined DBD-catalytic process. The physical and chemical properties of the samples were systematically studied by several analytical techniques including BET, XRD, SEM, HRTEM, XPS, and H2-TPR. The combination of DBD with α-MnO2 showed the highest CIP degradation efficiency, and the efficiency could reach 93.1% after 50 min, which was 10.8% and 18.1% higher, respectively, than those of β-MnO2 and γ-MnO2 catalysts in the plasma-catalytic system. According to the model of response surface methodology, the contribution of key experimental parameters on the CIP degradation decreased in the order: peak voltage > air flow rate > initial concentration > initial pH. The optimum operating parameters were peak voltage 17 kV, air flow rate 2.5 L min-1, an initial concentration 5 mg L-1 and an initial pH 6.9. The quenching experiments of active species showed that OH and O2- were critical to the CIP degradation. The generated O3 might be adsorbed by the α-MnO2 catalyst and resulted in more OH generation. The intermediate products of CIP degradation in DBD+α-MnO2 system were analyzed by LC-MS, and three possible degradation pathways were proposed. This research provides an insight into the use of the crystallographic structures in discharge plasma system for antibiotics in water.

中文翻译:

介质阻挡放电系统中不同MnO2纳米晶体上的水溶液中环丙沙星的等离子体催化降解。

通过水热法制备了α-MnO2,β-MnO2和γ-MnO2样品,并在联合DBD催化过程中将其用于降解环丙沙星(CIP)废水。通过包括BET,XRD,SEM,HRTEM,XPS和H2-TPR在内的多种分析技术,系统地研究了样品的物理和化学性质。DBD与α-MnO2的结合表现出最高的CIP降解效率,并且在50分钟后效率可达到93.1%,分别比β-MnO2和γ-MnO2催化剂分别高10.8%和18.1%。等离子体催化系统。根据响应面方法的模型,关键实验参数对CIP降解的贡献顺序为:峰值电压>空气流速>初始浓度>初始pH。最佳操作参数为峰值电压17 kV,空气流速2.5 L min-1,初始浓度5 mg L-1和初始pH 6.9。活性物质的猝灭实验表明,OH和O2-对CIP降解至关重要。生成的O3可能会被α-MnO2催化剂吸附并导致更多的OH生成。通过LC-MS分析了DBD +α-MnO2体系中CIP降解的中间产物,并提出了三种可能的降解途径。这项研究提供了一种结晶结构在放电等离子体系统中用于水中抗生素的见解。生成的O3可能会被α-MnO2催化剂吸附并导致更多的OH生成。通过LC-MS分析了DBD +α-MnO2体系中CIP降解的中间产物,并提出了三种可能的降解途径。这项研究提供了一种结晶结构在放电等离子体系统中用于水中抗生素的见解。生成的O3可能会被α-MnO2催化剂吸附并导致更多的OH生成。通过LC-MS分析了DBD +α-MnO2体系中CIP降解的中间产物,并提出了三种可能的降解途径。这项研究提供了一种结晶结构在放电等离子体系统中用于水中抗生素的见解。
更新日期:2020-04-03
down
wechat
bug